A reverse taxonomic approach to assess macrofaunal distribution patterns in abyssal Pacific polymetallic nodule fields

Type Article
Date 2015-02-11
Language English
Author(s) Janssen Annika1, Kaiser Stefanie1, Meissner Karin2, Brenke Nils1, Menot LenaickORCID3, Martinez Arbizu Pedro1
Affiliation(s) 1 : Deutsch Zentrum Marine Biodiversitatsforsch, Senckenberg Meer, D-26382 Wilhelmshaven, Germany.
2 : Deutsch Zentrum Marine Biodiversitatsforsch, Senckenberg Meer, Biozentrum Grindel, D-20146 Hamburg, Germany.
3 : Inst Francais Rech Exploitat Mer, Ctr Brest, F-29280 Plouzane, France.
Source Plos One (1932-6203) (Public Library Science), 2015-02-11 , Vol. 10 , N. 2 , P. 1-26
DOI 10.1371/journal.pone.0117790
WOS© Times Cited 70
Abstract Heightened interest in the exploitation of deep seafloor minerals is raising questions on the consequences for the resident fauna. Assessing species ranges and determination of processes underlying current species distributions are prerequisites to conservation planning and predicting faunal responses to changing environmental conditions. The abyssal central Pacific nodule belt, located between the Clarion and Clipperton Fracture Zones (CCZ), is an area prospected for mining of polymetallic nodules. We examined variations in genetic diversity and broad-scale connectivity of isopods and polychaetes across the CCZ. Faunal assemblages were studied from two mining claims (the eastern German and French license areas) located 1300 km apart and influenced by different productivity regimes. Using a reverse taxonomy approach based on DNA barcoding, we tested to what extent distance and large-scale changes in environmental parameters lead to differentiation in two macrofaunal taxa exhibiting different functions and life-history patterns. A fragment of the mitochondrial gene Cytochrome Oxidase Subunit 1 (COI) was analyzed. At a 97% threshold the molecular operational taxonomic units (MOTUs) corresponded well to morphological species. Molecular analyses indicated high local and regional diversity mostly because of large numbers of singletons in the samples. Consequently, variation in composition of genotypic clusters between sites was exceedingly large partly due to paucity of deep-sea sampling and faunal patchiness. A higher proportion of wide-ranging species in polychaetes was contrasted with mostly restricted distributions in isopods. Remarkably, several cryptic lineages appeared to be sympatric and occurred in taxa with putatively good dispersal abilities, whereas some brooding lineages revealed broad distributions across the CCZ. Geographic distance could explain variation in faunal connectivity between regions and sites to some extent, while assumed dispersal capabilities were not as important.
Full Text
File Pages Size Access
Publisher's official version 26 1 MB Open access
Top of the page