A Long Gravity-Piston Corer Developed for Seafloor Gas Hydrate Coring Utilizing an In Situ Pressure-Retained Method
A corer, which can obtain long in situ pressure-retained sediments of up to 30 m core containing gas hydrates, has been applied in the South China Sea (SCS) dozens of times. The corer presented in this paper is a convenient, efficient and economical long in situ pressure-retained coring and research tool for submarine sediments, that can applied to completely cope with all sediments close to the seafloor ranging from shallow waters to the deep sea depths of 6000 m. This article mainly presents the overall structure, working principles, key pressure-retained components, coring mechanism, sea trials and outlook of the corer. The analyses found that the coring ability was affected by formation characteristics, the outer diameter of the core barrels and inner diameter of the core liners, the shapes of the cutter and the dead weight of the corer. This study can provide the practical basis for the structural optimization of this type of corer and designs for corers with greater penetrability. Sea trials showed that the developed corer presented in this paper can support the in situ pressure of the seafloor sediment core, which is an improvement over the conventional piston corer.
Keyword(s)
gas hydrate corer, in situ pressure-retained corer, mechanism of coring, long coring, gravity-piston, key pressure-retained structure
Chen Jia-Wang, Fan Wei, Bingham Brian, Chen Ying, Gu Lin-Yi, Li Shi-Lun (2013). A Long Gravity-Piston Corer Developed for Seafloor Gas Hydrate Coring Utilizing an In Situ Pressure-Retained Method. Energies. 6 (7). 3353-3372. https://doi.org/10.3390/en6073353, https://archimer.ifremer.fr/doc/00264/37516/