Toward a Dynamical Approach for Systematic Conservation Planning of Eastern English Channel Fisheries
In the past decade, systematic conservation planning tools have been increasingly and successfully used to set spatial conservation plans that meet quantitative protection targets while minimizing enforcement and socioeconomic costs. However, when applied to fisheries, systematic conservation planning fails to account for (1) changes in fleet dynamics induced by new conservation constraints and their associated feedbacks on conservation costs or (2) their influence on fish population dynamics and distributions, which may in turn alter the achievement of conservation targets. Such a static approach may therefore lead to short- or medium-term misestimates in forecasted costs and target achievements. In order to circumvent such limitations of systematic conservation planning, we present a first attempt to couple a conservation planning tool (Marxan with Zones) with a mixed fisheries dynamics simulation model (ISIS-Fish), applied to the Eastern English Channel fisheries. Broad principles and perspectives are discussed and anticipated future challenges of such an approach are presented.
Keyword(s)
MPAs, Systematic conservation planning, Mixed fisheries dynamics, Model coupling, Eastern English Channel, Marxan with Zones, ISIS-Fish