Quantitative genetic variation for post-stress cortisol and swimming performance in growth-selected and control populations of European sea bass (Dicentrarchus labrax)

Type Article
Date 2016-03
Language English
Author(s) Vandeputte Marc1, 2, Porte J. D.3, Auperin B.4, Dupont-Nivet M.2, Vergnet Alain3, Valotaire C.4, Claireaux Guy5, Prunet P.4, Chatain Beatrice3
Affiliation(s) 1 : IFREMER, L 3AS, F-34250 Palavas Les Flots, France.
2 : Univ Paris Saclay, INRA, AgroParisTech, GABI, F-78350 Jouy En Josas, France.
3 : IFREMER, MARBEC UMR9190, F-34250 Palavas Les Flots, France.
4 : INRA, LPGP UR1037, Physiol & Genom Poissons, F-35000 Rennes, France.
5 : UBO, Ctr Ifremer Brest, LEMAR UMR 6539, Unite PFOM ARN, F-29280 Plouzane, France.
Source Aquaculture (0044-8486) (Elsevier Science Bv), 2016-03 , Vol. 455 , P. 1-7
DOI 10.1016/j.aquaculture.2016.01.003
WOS© Times Cited 25
Keyword(s) Aquaculture, Selective breeding, Stress response, Maximum sustained swimming speed, Heritability, Correlated response
Abstract Sea bass is a major species in Mediterranean aquaculture, and is now being subject to selective breeding programs for faster growth. In terrestrial species, it was demonstrated that fast growth may be linked to a correlated degradation of fitness traits. In this experiment, we evaluated 600 young sea bass from a factorial mating of 76 sires and 13 dams. The sires were from four genetic groups, wild (W), domesticated (D), and selected for growth (2 groups, M and P). The 600 offspring were submitted to two acute confinement stress challenges at 6 weeks intervals, and plasma cortisol at one hour post stress was measured. The same fish were also submitted to two swimming challenges at a 5 days interval, where the maximum sustained swimming speed (Umax) of each fish was evaluated. Parentage was assessed by genotyping of 12 microsatellites. 554 fish had both valid parentage and phenotypes. Cortisol had a low repeatability (r = 0.30 between the two successive measurements) while repeatability was moderate for Umax (r = 0.62). However, genetic correlations between successive measurements were very high (> 0.96) for both traits, indicating that successive measurements were related to the same trait. Heritability was moderate for mean post-stress cortisol (h2 = 0.34 ± 0.09) and Umax (h2 = 0.48 ± 0.08). When Umax was expressed in m.s− 1, it was negatively correlated to cortisol (rA = − 0.48 ± 0.08) and weakly correlated to body weight (rA = 0.12 ± 0.16), but figures changed when it was expressed in Body Lengths.s− 1(h2 = 0.55 ± 0.08, rA = − 0.10 ± 0.19 with cortisol and rA = − 0.64 ± 0.07 with body weight, respectively). Cortisol was moderately negatively correlated with body weight (rA = − 0.36 ± 0.18). The four lines did not differ for cortisol or Umax, but when Umax was expressed in BL.s− 1 it tended to be lower in the two selected lines - which were also significantly larger. However, this is likely due to a phenotypic decrease of relative Umax with increasing body size. We conclude that selection for growth and/or domestication should not impact maximum sustained swimming speed in the European sea bass, but may tend to favour animals with low cortisol responsiveness. These traits could be used to orientate functional capabilities other than productivity in sea bass.
Full Text
File Pages Size Access
Author's final draft 30 521 KB Open access
7 954 KB Access on demand
Top of the page

How to cite 

Vandeputte Marc, Porte J. D., Auperin B., Dupont-Nivet M., Vergnet Alain, Valotaire C., Claireaux Guy, Prunet P., Chatain Beatrice (2016). Quantitative genetic variation for post-stress cortisol and swimming performance in growth-selected and control populations of European sea bass (Dicentrarchus labrax). Aquaculture, 455, 1-7. Publisher's official version : https://doi.org/10.1016/j.aquaculture.2016.01.003 , Open Access version : https://archimer.ifremer.fr/doc/00308/41955/