Linking basin-scale connectivity, oceanography and population dynamics for the conservation and management of marine ecosystems

Type Article
Date 2016-05
Language English
Author(s) Dubois Melodie1, 3, Rossi Vincent1, Ser-Giacomi Enrico1, Arnaud-Haond SophieORCID2, Lopez Cristobal1, Hernandez-Garcia Emilio1
Affiliation(s) 1 : CSIC UIB, IFISC Inst Cross Disciplinary Phys & Complex Syst, Palma De Mallorca 07122, Spain.
2 : IFREMER, UMR MARBEC Marine Biodivers Exploitat & Conserv, Bd Jean Monnet,BP 171, F-34203 Sete, France.
3 : EPHE CNRS UPVD, CRIOBE, USR 3278, 58 Av Paul Alduy, F-66860 Perpignan, France.
Source Global Ecology And Biogeography (1466-822X) (Wiley-blackwell), 2016-05 , Vol. 25 , N. 5 , P. 503-515
DOI 10.1111/geb.12431
WOS© Times Cited 61
Keyword(s) Larval dispersal, local retention, marine connectivity, marine ecosystems, marine protected areas, Mediterranean Sea, population dynamics, population genetics, self-recruitment, source, sink dynamics
Abstract Aim

Assessing the spatial structure and dynamics of marine populations is still a major challenge in ecology. The need to manage marine resources from ecosystem and large-scale perspectives is recognized, but our partial understanding of oceanic connectivity limits the implementation of globally pertinent conservation planning. Based on a biophysical model for the entire Mediterranean Sea, this study takes an ecosystem approach to connectivity and provides a systematic characterization of broad-scale larval dispersal patterns. It builds on our knowledge of population dynamics and discusses the ecological and management implications.

The semi-enclosed Mediterranean Sea and its marine ecosystems are used as a case study to investigate broad-scale connectivity patterns and to relate them to oceanography and population dynamics.

A flow network is constructed by evenly subdividing the basin into sub-regions which are interconnected through the transport of larvae by ocean currents. It allows for the computation of various connectivity metrics required to evaluate larval retention and exchange.

Our basin-scale model predicts that retention processes are weak in the open ocean while they are significant in the coastal ocean and are favoured along certain coastlines due to specific oceanographic features. Moreover, we show that wind-driven divergent (convergent, respectively) oceanic regions are systematically characterized by larval sources (sinks, respectively). Finally, although these connectivity metrics have often been studied separately in the literature, we demonstrate they are interrelated under particular conditions. Their integrated analysis facilitates the appraisal of population dynamics, informing both genetic and demographic connectivities.
Main conclusions

This modelling framework helps ecologists and geneticists to formulate improved hypotheses of population structures and gene flow patterns and to design their sampling strategy accordingly. It is also useful in the implementation and assessment of future protection strategies, such as coastal and offshore marine reserves, by accounting for large-scale dispersal patterns, a missing component of current ecosystem management.
Full Text
File Pages Size Access
13 3 MB Access on demand
13 5 MB Access on demand
21 KB Access on demand
Author's final draft 34 9 MB Open access
Top of the page

How to cite 

Dubois Melodie, Rossi Vincent, Ser-Giacomi Enrico, Arnaud-Haond Sophie, Lopez Cristobal, Hernandez-Garcia Emilio (2016). Linking basin-scale connectivity, oceanography and population dynamics for the conservation and management of marine ecosystems. Global Ecology And Biogeography, 25(5), 503-515. Publisher's official version : , Open Access version :