Use of a lipid rich strain reveals mechanisms of nitrogen limitation and carbon partitioning in the haptophyte Tisochrysis lutea

Type Article
Date 2016-12
Language English
Author(s) Garnier MatthieuORCID1, Bougaran GaelORCID1, Pavlovic Marija2, Berard Jean-BaptisteORCID1, Carrier GregoryORCID1, Charrier Aurelie1, Le Grand Fabienne3, Lukomska Ewa1, Rouxel Catherine1, Schreiber Nathalie1, Cadoret Jean-Paul1, Rogniaux Helene2, Saint-Jean BrunoORCID1
Affiliation(s) 1 : IFREMER, PBA, Rue Ile Yeu,BP 21105, F-44311 Nantes 03, France.
2 : INRA, UR1268, BIA, Rue Geraudiere,BP71627, F-44313 Nantes 03, France.
3 : Univ Brest, CNRS, IFREMER, IRD,LEMAR,IUEM, Pl Nicolas Copernic, F-29280 Plouzane, France.
Source Algal Research-biomass Biofuels And Bioproducts (2211-9264) (Elsevier Science Bv), 2016-12 , Vol. 20 , P. 229-248
DOI 10.1016/j.algal.2016.10.017
WOS© Times Cited 23
Keyword(s) Algae, Isochrysis, Lipids, Nitrogen, Reverse genomic: proteomic
Abstract Haptophytes are a diverse monophyletic group with a worldwide distribution, known to be significantly involved in global climate regulation in their role as a carbon sink. Because nitrogen is a major limiting macronutrient for phytoplankton in oceans and for cultures of microalgae, understanding the involvement of nitrogen availability in haptophyte carbon partitioning is of global and biotechnological importance. Here, we made an ecophysiological study coupled with comprehensive large scale proteomic analysis to examine differences of behavior in reaction to nitrogen availability changes between a wild type strain of Tisochrysis lutea (WTc1) and a mutant strain (2Xc1) known to accumulate more storage lipids. Strains were grown in chemostats and studied under different ecophysiological conditions including N limitation, N repletion and N depletion. Whereas short time N repletion triggered consumption of carbohydrates in both strains, storage lipid degradation and accumulation during changes of ecophysiological status were recorded in 2Xc1 but not in WTc1. After 3 months of continuous culture, 2Xc1 exhibited an unexpected increase of carbon sequestration ability (+ 50%) by producing twofold more carbohydrates for the same nitrogen availability. Deep proteomic analysis by LC-MS/MS identified and compared the abundance of 4332 proteins, i.e. the deepest coverage of a microalgal proteome obtained to date. Results revealed that storage lipid accumulation is favored by an overall reorganization of carbon partitioning in 2Xc1 cells that increases the metabolism of carbon and energy acquisition, and decreases mitochondrial activity and metabolic conversion of storage lipids to phosphoenolpyruvate before gluconeogenesis.
Full Text
File Pages Size Access
20 1 MB Access on demand
Author's final draft 66 1 MB Open access
Top of the page

How to cite 

Garnier Matthieu, Bougaran Gael, Pavlovic Marija, Berard Jean-Baptiste, Carrier Gregory, Charrier Aurelie, Le Grand Fabienne, Lukomska Ewa, Rouxel Catherine, Schreiber Nathalie, Cadoret Jean-Paul, Rogniaux Helene, Saint-Jean Bruno (2016). Use of a lipid rich strain reveals mechanisms of nitrogen limitation and carbon partitioning in the haptophyte Tisochrysis lutea. Algal Research-biomass Biofuels And Bioproducts, 20, 229-248. Publisher's official version : , Open Access version :