Net primary productivity estimates and environmental variables in the Arctic Ocean: An assessment of coupled physical-biogeochemical models

Type Article
Date 2016-12
Language English
Author(s) Lee Younjoo J.1, 2, Matrai Patricia A.1, Friedrichs Marjorie A. M.3, Saba Vincent S.4, Aumont Olivier5, Babin Marcel6, Buitenhuis Erik T.7, Chevallier Matthieu8, de Mora Lee9, Dessert Morgane10, Dunne John P.11, Ellingsen Ingrid H.12, Feldman Doron13, Frouin Robert14, Gehlen Marion15, Gorgues Thomas10, Ilyina Tatiana16, Jin Meibing17, 18, John Jasmin G.11, Lawrence Jon19, Manizza Manfredi20, Menkes Christophe E.5, Perruche Coralie21, Le Fouest Vincent22, Popova Ekaterina E.19, Romanou Anastasia13, 23, Samuelsen Annette24, 25, Schwinger Jorg26, Seferian Roland8, Stock Charles A.11, Tjiputra Jerry26, Tremblay Bruno27, Ueyoshi Kyozo14, Vichi Marcello28, 29, Yool Andrew19, Zhang Jinlun30
Affiliation(s) 1 : Bigelow Lab Ocean Sci, East Boothbay, ME 04544 USA.
2 : Naval Postgrad Sch, Dept Oceanog, Monterey, CA 93943 USA.
3 : Coll William & Mary, Virginia Inst Marine Sci, Gloucester Point, VA USA.
4 : Princeton Univ, Natl Ocean & Atmospher Adm, Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr,Geophys Fluid Dynam L, Princeton, NJ 08544 USA.
5 : Univ Paris 06, Lab Ocean Climat Exploitat & Applicat Numer, Inst Pierre Simon Laplace, CNRS,IRD, Paris, France.
6 : Univ Laval, CNRS, Takuvik Joint Int Lab, Quebec City, PQ, Canada.
7 : Univ East Anglia, Sch Environm Sci, Norwich, Norfolk, England.
8 : CNRS, Ctr Natl Rech Meteorol, Unite Mixte Rech Meteo France 3589, Toulouse, France.
9 : Plymouth Marine Lab, Plymouth, Devon, England.
10 : UBO, Lab Oceanog Phys & Spatiale, CNRS, IFREMER,IRD,Inst Univ & Europeen Mer, Plouzane, France.
11 : NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA.
12 : SINTEF Fisheries & Aquaculture, Trondheim, Norway.
13 : NASA, Goddard Inst Space Studies, New York, NY 10025 USA.
14 : Univ Calif, Scripps Inst Oceanog, Climate Atmospher Sci & Phys Oceanog Div, La Jolla, CA USA.
15 : Inst Pierre Simon Laplace, Lab Sci Climat & Environm, Gif Sur Yvette, France.
16 : Max Planck Inst Meteorol, Hamburg, Germany.
17 : Univ Alaska, Int Arctic Res Ctr, Fairbanks, AK 99701 USA.
18 : Qingdao Natl Lab Marine Sci & Technol, Lab Reg Oceanog & Numer Modeling, Qingdao, Peoples R China.
19 : Univ Southampton, Natl Oceanog Ctr, Southampton, Hants, England.
20 : Univ Calif, Scripps Inst Oceanog, Geosci Res Div, La Jolla, CA USA.
21 : Mercator Ocean, Toulouse, France.
22 : Univ La Rochelle, LIttoral Environm & Soc, La Rochelle, France.
23 : Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA.
24 : Nansen Environm & Remote Sensing Ctr, Bergen, Norway.
25 : Hjort Ctr Marine Ecosyst Dynam, Bergen, Norway.
26 : Bjerknes Ctr Climate Res, Uni Res Climate, Bergen, Norway.
27 : McGill Univ, Dept Atmospher & Ocean Sci, Montreal, PQ, Canada.
28 : Univ Cape Town, Dept Oceanog, Cape Town, South Africa.
29 : Univ Cape Town, Marine Res Inst, Cape Town, South Africa.
30 : Univ Washington, Appl Phys Lab, Seattle, WA 98105 USA.
Source Journal Of Geophysical Research-oceans (2169-9275) (Amer Geophysical Union), 2016-12 , Vol. 121 , N. 12 , P. 8635-8669
DOI 10.1002/2016JC011993
WOS© Times Cited 31
Abstract

The relative skill of 21 regional and global biogeochemical models was assessed in terms of how well the models reproduced observed net primary productivity (NPP) and environmental variables such as nitrate concentration (NO3), mixed layer depth (MLD), euphotic layer depth (Z(eu)), and sea ice concentration, by comparing results against a newly updated, quality-controlled in situ NPP database for the Arctic Ocean (1959-2011). The models broadly captured the spatial features of integrated NPP (iNPP) on a pan-Arctic scale. Most models underestimated iNPP by varying degrees in spite of overestimating surface NO3, MLD, and Z(eu) throughout the regions. Among the models, iNPP exhibited little difference over sea ice condition (ice-free versus ice-influenced) and bottom depth (shelf versus deep ocean). The models performed relatively well for the most recent decade and toward the end of Arctic summer. In the Barents and Greenland Seas, regional model skill of surface NO3 was best associated with how well MLD was reproduced. Regionally, iNPP was relatively well simulated in the Beaufort Sea and the central Arctic Basin, where in situ NPP is low and nutrients are mostly depleted. Models performed less well at simulating iNPP in the Greenland and Chukchi Seas, despite the higher model skill in MLD and sea ice concentration, respectively. iNPP model skill was constrained by different factors in different Arctic Ocean regions. Our study suggests that better parameterization of biological and ecological microbial rates (phytoplankton growth and zooplankton grazing) are needed for improved Arctic Ocean biogeochemical modeling.

Full Text
File Pages Size Access
Publisher's official version 35 1 MB Open access
Top of the page

How to cite 

Lee Younjoo J., Matrai Patricia A., Friedrichs Marjorie A. M., Saba Vincent S., Aumont Olivier, Babin Marcel, Buitenhuis Erik T., Chevallier Matthieu, de Mora Lee, Dessert Morgane, Dunne John P., Ellingsen Ingrid H., Feldman Doron, Frouin Robert, Gehlen Marion, Gorgues Thomas, Ilyina Tatiana, Jin Meibing, John Jasmin G., Lawrence Jon, Manizza Manfredi, Menkes Christophe E., Perruche Coralie, Le Fouest Vincent, Popova Ekaterina E., Romanou Anastasia, Samuelsen Annette, Schwinger Jorg, Seferian Roland, Stock Charles A., Tjiputra Jerry, Tremblay Bruno, Ueyoshi Kyozo, Vichi Marcello, Yool Andrew, Zhang Jinlun (2016). Net primary productivity estimates and environmental variables in the Arctic Ocean: An assessment of coupled physical-biogeochemical models. Journal Of Geophysical Research-oceans, 121(12), 8635-8669. Publisher's official version : https://doi.org/10.1002/2016JC011993 , Open Access version : https://archimer.ifremer.fr/doc/00373/48441/