Ka-Band Dual Copolarized Empirical Model for the Sea Surface Radar Cross Section

This paper presents dual copolarized (PP) (VV and HH) Ka-band sea surface backscattering measurements taken from the Black Sea research platform at incidence angles ranging from 25 degrees to 65 degrees and in the wind speed range from 3 to 18 m/s. These measurements are corrected for radar antenna pattern and geometry of observations. The resulting normalized radar cross section (NRCS) is parameterized in a form of truncated azimuthal Fourier series with coefficients dependent on the incidence angle and wind speed. This dual PP empirical model (KaDPMod) is consistent with the Ku-band NSCAT-4 model. However, some remarkable differences are revealed. They are apparent when analyzed using a decomposition of VV and HH measurements into polarized Bragg backscattering (polarization difference, PD = VV-HH) and nonpolarized (NP) backscattering from breaking waves. The polarization difference (PD) has strong azimuth and wind dependencies, with the wind exponent ranging from 2.5 to 3. The saturation wave spectra derived from multifrequency PD (based on KaDPMod and Ku- and C-band empirical models) have a notable peak in the capillary-gravity range. The relative contribution of NP radar return to the Ka-band NRCS is significant. In the upwind direction, it reaches up to 60%-80% and 25%-50% for HH and VV, respectively. It is found that the NP wind exponent is lower than that for Bragg backscattering. Therefore, the relative contribution of the NP to Ka-band NRCS decreases with increasing wind speed at both polarizations. Such a behavior is the opposite of that observed in the Ku-band.

Keyword(s)

Capillary waves, cross section, radar backscattering, sea surface, wave breaking

Full Text

FilePagesSizeAccess
Publisher's official version
203 Mo
Author's final draft
333 Mo
How to cite
Yurovsky Yury Yu, Kudryavtsev Vladimir N., Grodsky Semyon A., Chapron Bertrand (2017). Ka-Band Dual Copolarized Empirical Model for the Sea Surface Radar Cross Section. Ieee Transactions On Geoscience And Remote Sensing. 55 (3). 1629-1647. https://doi.org/10.1109/TGRS.2016.2628640, https://archimer.ifremer.fr/doc/00377/48783/

Copy this text