GF-3 SAR Ocean Wind Retrieval: The First View and Preliminary Assessment

Gaofen-3 (GF-3) is the first Chinese civil C-band synthetic aperture radar (SAR) launched on 10 August 2016 by the China Academy of Space Technology (CAST), which operates in 12 imaging modes with a fine spatial resolution up to 1 m. As one of the primary users, the State Oceanic Administration (SOA) operationally processes GF-3 SAR Level-1 products into ocean surface wind vector and plans to officially release the near real-time SAR wind products in the near future. In this paper, the methodology of wind retrieval at C-band SAR is introduced and the first results of GF-3 SAR-derived winds are presented. In particular, the case of the coastal katabatic wind off the west coast of the U.S. captured by GF-3 is discussed. The preliminary accuracy assessment of wind speed and direction retrievals from GF-3 SAR is carried out against in situ measurements from National Data Buoy Center (NDBC) buoy measurements of National Oceanic and Atmospheric Administration (NOAA). Only the buoys located inside the GF-3 SAR wind cell (1 km) were considered as co-located in space, while the time interval between observations of SAR and buoy was limited to less the 30 min. These criteria yielded 56 co-locations during the period from January to April 2017, showing the Root Mean Square Error (RMSE) of 2.46 m/s and 22.22 degrees for wind speed and direction, respectively. Different performances due to geophysical model function (GMF) and Polarization Ratio (PR) are discussed. The preliminary results indicate that GF-3 wind retrievals are encouraging for operational implementation.


GF-3, synthetic aperture radar (SAR), ocean surface wind, validation

Full Text

Publisher's official version
124 Mo
How to cite
Wang He, Yang Jingsong, Mouche Alexis, Shao Weizeng, Zhu Jianhua, Ren Lin, Xie Chunhua (2017). GF-3 SAR Ocean Wind Retrieval: The First View and Preliminary Assessment. Remote Sensing. 9 (7). 694 (1-12).,

Copy this text