Dinoflagellate fossils: Geological and biological applications

Dinoflagellates are part of the marine plankton and about 200 species produce a cyst (dinocyst) during their life cycle, these organic-walled sexually-produced cysts being fossilizable in sediments for hundreds of millions of years. Over the past 40–50 years, dinocysts have led to major advances on Mesozoic-Cenozoic research, in terms of biostratigraphy and paleogeogeography. Dinocyst taxonomy has then been continuously revised, with the tabulation being the main morphological link between living dinoflagellates and fossilized cysts. Over the Quaternary, and based on the principle of uniformitarianism (i.e. species ecology did not change through time), relationships between modern assemblages and present-day environmental factors controlling their distribution also allow for dinocyst-based quantitative reconstructions derived from transfer function calculations. This paper presents a non-exhaustive review of the dinocyst literature allowing the reader to get a perspective about how they were discovered and defined, but also how they are applied in (paleo)ecological studies according to the timescale considered allowing then to provide useful insights into the future climate change and its associated ecological repercussions.

Keyword(s)

Dinoflagellate, Cyst-motile stage relationship, Modern dinocyst distribution, Paleoecology, Biostratigraphy, Ancient DNA

Full Text

FilePagesSizeAccess
Publisher's official version
203 Mo
Author's final draft
711 Mo
How to cite
Penaud Aurelie, Hardy William, Lambert Clement, Marret Fabienne, Masure Edwige, Seryais Thomas, Siano Raffaele, Wary Melanie, Mertens Kenneth (2018). Dinoflagellate fossils: Geological and biological applications. Revue De Micropaleontologie. 61 (3-4). 235-254. https://doi.org/10.1016/j.revmic.2018.09.003, https://archimer.ifremer.fr/doc/00463/57476/

Copy this text