Available Potential Energy in Density Coordinates

Type Article
Date 2018-08
Language English
Author(s) Colin De Verdiere Alain1, Huck Thierry2, Pogossian Souren1, Ollitrault Michel3
Affiliation(s) 1 : Univ Bretagne Occidentale, Lab Oceanog Phys & Spatiale, Brest, France.
Source Journal Of Physical Oceanography (0022-3670) (Amer Meteorological Soc), 2018-08 , Vol. 48 , N. 8 , P. 1867-1883
DOI 10.1175/JPO-D-17-0272.1
Keyword(s) Energy transport, Ocean circulation, Ocean dynamics, Isopycnal coordinates

The vertically integrated potential energy of an incompressible stratified fluid formulated in density coordinates can be simply written as a weighted vertical sum of the squares of the vertical displacements of density surfaces, a general expression valid for arbitrary displacements. The sum of this form of potential energy and kinetic energy is then a conserved quantity for the multilayer shallow water model. The formulation in density coordinates is a natural one to find the Lorenz reference state of available potential energy (APE).We describe the method to compute the APE of an ocean state and provide two applications. The first is the classical double-gyre, wind-driven circulation simulated by a shallow water model at high resolution.We show that the eddy kinetic and eddy potential energies are localized in regions of large gradients of mean APE. These large gradients surround an APE minimum found between the two gyres. The second is the timemean World Ocean Circulation reconstructed from hydrography (World Ocean Atlas) and reference velocities at 1000 db from the Argo float program to obtain an absolute circulation. The total available potential energy exceeds the total mean kinetic energy of the World Ocean by three orders of magnitude, pointing out the very small Burger number of the circulation. The Gulf Stream, the Kuroshio, the Agulhas retroflection, and the confluence regions are four examples that confirm the shallow water model results that large gradients of mean available potential energy can be used as predictors for the presence of high eddy kinetic energy (obtained here from satellite altimetry).

Full Text
File Pages Size Access
Publisher's official version 17 2 MB Open access
Top of the page