Design, Characterization, and Test of a Versatile Single-Mode Power-Over-Fiber and Communication System for Seafloor Observatories

Type Article
Date 2020-04
Language English
Author(s) Diouf Cherif1, Quintard Veronique1, Ghisa Laura1, Guegan Mikael1, Perennou Andre1, Gautier LaurentORCID2, Tardivel Morgan2, Barbot Stephane2, Dutreuil Vincent2, Colas FlorentORCID2
Affiliation(s) 1 : Ecole Nationale d'Ingénieurs de Brest, Lab-STICC CNRS UMR 6285, Technopôle Brest-Iroise, C.S. 73862, Brest Cedex 3 29238, France
2 : IFREMER/RDT, Centre de Brest, BP 70, Plouzané 29280, France
Source Ieee Journal Of Oceanic Engineering (0364-9059) (Institute of Electrical and Electronics Engineers (IEEE)), 2020-04 , Vol. 45 , N. 2 , P. 656-664
DOI 10.1109/JOE.2018.2876049
WOS© Times Cited 12
Keyword(s) Optical sensors, Optical pumping, Integrated optics, Optical scattering, Nonlinear optics, Optical attenuators, Low power embedded systems, power-over-fiber (PoF), Raman amplification, remote sensing, seafloor observatories
Abstract

A power-over-fiber (PoF) and communication system for extending a cabled seafloor observatory is demonstrated in this contribution. The system allows the cabled seafloor observatory to be linked, through a single optical fiber, to a sensor node located 8 km away. The PoF system is based on an optical architecture in which power and data propagate simultaneously on the same single-mode fiber. The Raman scattering effect is exploited to amplify the optical data signals and leads to the minimization of the sensor node power consumption. Versatile low power electronic interfaces have been developed to ensure compatibility with a wide range of marine sensors. A low-consumption field-programmable gate array and an energy-efficient microcontroller are used to develop the electronic interfaces. For an electrical input power of 31 W, up to 190 mW is recovered at the sensor node while a data bitrate of up to 3.6 Mb/s is achieved. The PoF system has been tested and validated for turbidity and acoustic measurement applications. The current study focuses on the electronic development and the validation of the PoF system.

Full Text
File Pages Size Access
Author's final draft 17 1 MB Open access
9 2 MB Access on demand
Top of the page

How to cite 

Diouf Cherif, Quintard Veronique, Ghisa Laura, Guegan Mikael, Perennou Andre, Gautier Laurent, Tardivel Morgan, Barbot Stephane, Dutreuil Vincent, Colas Florent (2020). Design, Characterization, and Test of a Versatile Single-Mode Power-Over-Fiber and Communication System for Seafloor Observatories. Ieee Journal Of Oceanic Engineering, 45(2), 656-664. Publisher's official version : https://doi.org/10.1109/JOE.2018.2876049 , Open Access version : https://archimer.ifremer.fr/doc/00465/57684/