Dynamic epimarks in sex-related genes predict gonad phenotype in the European sea bass, a fish with mixed genetic and environmental sex determination

Type Article
Date 2018
Language English
Author(s) Anastasiadi DafniORCID1, Vandeputte Marc2, 3, Sanchez-Baizan NuriaORCID1, Allal FrancoisORCID4, Piferrer FrancescORCID1
Affiliation(s) 1 : CSIC, Inst Ciencies Mar, Passeig Maritim 37-49, Barcelona 08003, Spain.
2 : Univ Montpellier, CNRS, MARBEC, Ifremer,IRD, Palavas Les Flots, France.
3 : Univ Paris Saclay, AgroParisTech, GABI, Jouy En Josas, France.
Source Epigenetics (1559-2294) (Taylor & Francis Inc), 2018 , Vol. 13 , N. 9 , P. 988-1011
DOI 10.1080/15592294.2018.1529504
WOS© Times Cited 12
Keyword(s) Early development, environmental temperature, DNA methylation, sex determination, aromatase, cyp19a1a, dmrt1, epigenetic marks, DNA methylation threshold, epigenetic inheritance
Abstract

The integration of genomic and environmental influences into methylation patterns to bring about a phenotype is of central interest in developmental epigenetics, but many details are still unclear. The sex ratios of the species used here, the European sea bass, are determined by genetic and temperature influences. We created four families from parents known to produce offspring with different sex ratios, exposed larvae to masculinizing temperatures and examined, in juvenile gonads, the DNA methylation of seven genes related to sexual development by a targeted sequencing approach. The genes most affected by both genetics and environment were cyp19a1a and dmrt1, with contrasting sex-specific methylation and temperature responses. The relationship between cyp19a1a methylation and expression is relevant to the epigenetic regulation of vertebrate sex, and we report the evidence of such relationship only below a methylation threshold, similar to 80%, and that it was sex-specific: negatively correlated in females but positively correlated in males. From parents to offspring, the methylation in gonads was midway between oocytes and sperm, with bias towards oocytes for amh-r2, er-beta 2, fsh-r and cyp19a1a. In contrast, dmrt1 levels resembled those of sperm. The methylation of individual CpGs from foxl2, er-beta 2 and nr3c1 were conserved from parents to offspring, whereas those of cyp19a1a, dmrt1 and amh-r2 were affected by temperature. Utilizing a machine-learning procedure based on the methylation levels of a selected set of CpGs, we present the first, to our knowledge, system based on epigenetic marks capable of predicting sex in an animal with similar to 90% accuracy and discuss possible applications.

Full Text
File Pages Size Access
24 3 MB Access on demand
53 KB Access on demand
1 MB Access on demand
22 KB Access on demand
10 820 KB Access on demand
Author's final draft 55 1 MB Open access
Top of the page