A surface kinematics buoy (SKIB) for wave–current interaction studies
Type | Article | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | 2018-11 | ||||||||||||
Language | English | ||||||||||||
Author(s) | Veras Guimaraes Pedro1, 2, Ardhuin Fabrice![]() ![]() |
||||||||||||
Affiliation(s) | 1 : Univ Brest, CNRS, IFREMER, IRD,LOPS, F-29280 Plouzane, France. 2 : Ecole Cent Nantes, LHEEA Lab, UMR6598, F-44300 Nantes, France. 3 : Univ Washington, Appl Phys Lab, Seattle, WA 98105 USA. 4 : ISMAR, I-2737 Venice, Italy. |
||||||||||||
Source | Ocean Science (1812-0784) (Copernicus Gesellschaft Mbh), 2018-11 , Vol. 14 , N. 6 , P. 1449-1460 | ||||||||||||
DOI | 10.5194/os-14-1449-2018 | ||||||||||||
WOS© Times Cited | 20 | ||||||||||||
Abstract | Global navigation satellite systems (GNSSs) and modern motion-sensor packages allow the measurement of ocean surface waves with low-cost drifters. Drifting along or across current gradients provides unique measurements of wave–current interactions. In this study, we investigate the response of several combinations of GNSS receiver, motion-sensor package and hull design in order to define a prototype “surface kinematics buoy” (SKIB) that is particularly optimized for measuring wave–current interactions, including relatively short wave components that are important for air–sea interactions and remote-sensing applications. The comparison with existing Datawell Directional Waverider and Surface Wave Instrument Float with Tracking (SWIFT) buoys, as well as stereo-video imagery, demonstrates the performance of SKIB. The use of low-cost accelerometers and a spherical ribbed and skirted hull design provides acceptable heave spectra E(f) from 0.09 to 1 Hz with an acceleration noise level (2πf)4E(f) close to 0.023 m2 s−3. Velocity estimates from GNSS receivers yield a mean direction and directional spread. Using a low-power acquisition board allows autonomous deployments over several months with data transmitted by satellite. The capability to measure current-induced wave variations is illustrated with data acquired in a macro-tidal coastal environment. |
||||||||||||
Full Text |
|