A surface kinematics buoy (SKIB) for wave–current interaction studies

Type Article
Date 2018-11
Language English
Author(s) Veras Guimaraes Pedro1, 2, Ardhuin FabriceORCID5, Sutherland Peter6, Accensi MickaelORCID6, Hamon Michel6, Perignon Yves2, Thomson Jim3, Benetazzo Alvise4, Ferrant Pierre2
Affiliation(s) 1 : Univ Brest, CNRS, IFREMER, IRD,LOPS, F-29280 Plouzane, France.
2 : Ecole Cent Nantes, LHEEA Lab, UMR6598, F-44300 Nantes, France.
3 : Univ Washington, Appl Phys Lab, Seattle, WA 98105 USA.
4 : ISMAR, I-2737 Venice, Italy.
Source Ocean Science (1812-0784) (Copernicus Gesellschaft Mbh), 2018-11 , Vol. 14 , N. 6 , P. 1449-1460
DOI 10.5194/os-14-1449-2018
WOS© Times Cited 21
Abstract

Global navigation satellite systems (GNSSs) and modern motion-sensor packages allow the measurement of ocean surface waves with low-cost drifters. Drifting along or across current gradients provides unique measurements of wave–current interactions. In this study, we investigate the response of several combinations of GNSS receiver, motion-sensor package and hull design in order to define a prototype “surface kinematics buoy” (SKIB) that is particularly optimized for measuring wave–current interactions, including relatively short wave components that are important for air–sea interactions and remote-sensing applications. The comparison with existing Datawell Directional Waverider and Surface Wave Instrument Float with Tracking (SWIFT) buoys, as well as stereo-video imagery, demonstrates the performance of SKIB. The use of low-cost accelerometers and a spherical ribbed and skirted hull design provides acceptable heave spectra E(f) from 0.09 to 1 Hz with an acceleration noise level (2πf)4E(f) close to 0.023 m2 s−3. Velocity estimates from GNSS receivers yield a mean direction and directional spread. Using a low-power acquisition board allows autonomous deployments over several months with data transmitted by satellite. The capability to measure current-induced wave variations is illustrated with data acquired in a macro-tidal coastal environment.

Full Text
File Pages Size Access
Publisher's official version 12 5 MB Open access
Discussion paper 20 8 MB Open access
Top of the page

How to cite 

Veras Guimaraes Pedro, Ardhuin Fabrice, Sutherland Peter, Accensi Mickael, Hamon Michel, Perignon Yves, Thomson Jim, Benetazzo Alvise, Ferrant Pierre (2018). A surface kinematics buoy (SKIB) for wave–current interaction studies. Ocean Science, 14(6), 1449-1460. Publisher's official version : https://doi.org/10.5194/os-14-1449-2018 , Open Access version : https://archimer.ifremer.fr/doc/00470/58136/