High rates of apoptosis visualized in the symbiont-bearing gills of deep-sea Bathymodiolus mussels

Symbiosis between Bathymodiolus and Gammaproteobacteria allows these deep-sea mussels to live in toxic environments such as hydrothermal vents and cold seeps. The quantity of endosymbionts within the gill-bacteriocytes appears to vary according to the hosts environment; however, the mechanisms of endosymbiont population size regulation remain obscure. We investigated the possibility of a control of endosymbiont density by apoptosis, a programmed cell death, in three mussel species. Fluorometric TUNEL and active Caspase-3-targeting antibodies were used to visualize and quantify apoptotic cells in mussel gills. To control for potential artefacts due to depressurization upon specimen recovery from the deep-sea, the apoptotic rates between mussels recovered unpressurised, versus mussels recovered in a pressure-maintaining device, were compared in two species from hydro thermal vents on the Mid-Atlantic Ridge: Bathymodiolus azoricus and B. puteoserpentis. Results show that pressurized recovery had no significant effect on the apoptotic rate in the gill filaments. Apoptotic levels were highest in the ciliated zone and in the circulating hemocytes, compared to the bacteriocyte zone. Apoptotic gill-cells in B. aff. boomerang from cold seeps off the Gulf of Guinea show similar distribution patterns. Deep-sea symbiotic mussels have much higher rates of apoptosis in their gills than the coastal mussel Mytilus edulis, which lacks chemolithoautotrophic symbionts. We discuss how apoptosis might be one of the mechanisms that contribute to the adaptation of deep-sea mussels to toxic environments and/or to symbiosis.

Full Text

FilePagesSizeAccess
Publisher's official version
212 Mo
S1 Table. Median percentage of apoptosis in all individuals from the four species in this study, with their shell measurements, collection site, and method of recovery.
3322 Ko
S1 Fig. Measurements of mussel shells.
-1 Mo
S2 Fig. Gills of Bathymodiolus spp.
-3 Mo
S3 Fig. Percentage of apoptotic nuclei in the ciliated (A), hemolymph (B) and bacteriocyte (C) zones in individual specimens of B. azoricus and B. puteoserpentis from the three site
-3 Mo
S4 Fig. TUNEL labelling on gill filaments of Bathymodiolus azoricus.
-539 Ko
S5 Fig. Percentage of apoptotic nuclei in the ciliated (A) and hemolymph zones (B) of B. azoricus and B. puteoserpentis from the three sites.
-2 Mo
How to cite
Piquet Berenice, Shillito Bruce, Lallier Francois H., Duperron Sebastien, Andersen Ann C. (2019). High rates of apoptosis visualized in the symbiont-bearing gills of deep-sea Bathymodiolus mussels. Plos One. 14 (2). e0211499 (21p.). https://doi.org/10.1371/journal.pone.0211499, https://archimer.ifremer.fr/doc/00484/59526/

Copy this text