Formation and evolution of glauconite in the Demerara Contourite depositional system related to NADW circulation changes during late Quaternary (French Guiana)

The Demerara Plateau is a marginal plateau which forms a bathymetric relief on the sea floor. Here, contourite deposits have been studied in detail, following the recent discovery of contourite sequences likely related to the bottom currents and linked both to contour current and peculiar sea-floor morphology. A chronostratigraphic framework, based on δ18O relative variations and palaeomagnetic events in sediment cores allows correlating sediment processes to current intensity changes and major climate phases (glacial or interglacial). The studied sediments are enriched in glauconitic grains. In addition, the glauconite mineralogical maturity can easily correlate to low sedimentation rate and slightly energetic bottom currents on the seafloor. Based on these data and using the glauconitic authigenic mineral as proxy for inferring the degree of winnowing at the sediment-water interface, we might put forward the hypothesis that the intensity of NADW is higher during the glacial stages and lower during interglacial periods.

Keyword(s)

Marginal plateau, Contourite, Glauconite, Demerara plateau

Full Text

FilePagesSizeAccess
Author's final draft
5014 Mo
Publisher's official version
175 Mo
How to cite
Tallobre Cédric, Giresse Pierre, Bassetti Maria-Angela, Loncke Lies, Bayon Germain, Buscail Roselyne, Tudryn Alina, Zaragosi Sébastien (2019). Formation and evolution of glauconite in the Demerara Contourite depositional system related to NADW circulation changes during late Quaternary (French Guiana). Journal Of South American Earth Sciences. 92. 167-183. https://doi.org/10.1016/j.jsames.2019.03.011, https://archimer.ifremer.fr/doc/00485/59665/

Copy this text