Atlantic Meridional Overturning Circulation: Observed Transport and Variability

Type Article
Date 2019-06
Language English
Author(s) Frajka-Williams Eleanor1, Ansorge Isabelle J.2, Baehr Johanna3, Bryden Harry L.4, Chidichimo Maria Paz5, Cunningham Stuart A.6, Danabasoglu Gokhan7, Dong Shenfu8, Donohue Kathleen A.9, Elipot Shane10, Heimbach Patrick11, Holliday N. Penny1, Hummels Rebecca12, Jackson Laura C.13, Karstensen Johannes12, Lankhorst Matthias14, Le Bras Isabela A.14, Lozier M. Susan15, McDonagh Elaine L.1, Meinen Christopher S.8, Mercier HerleORCID16, Moat Bengamin I.1, Perez Renellys C8, Piecuch Christopher G.17, Rhein Monika18, Srokosz Meric A.1, Trenberth Kevin E.7, Bacon Sheldon1, Forget Gael19, Goni Gustavo8, Kieke Dagmar18, Koelling Jannes14, Lamont Tarron2, 20, McCarthy Gerard D.21, Mertens Christian18, Send Uwe14, Smeed David A.1, Speich Sabrina22, Van Den Berg Marcel20, Volkov Denis8, Wilson Chris23
Affiliation(s) 1 : National Oceanography Centre, Southampton, United Kingdom
2 : Department of Oceanography, University of Cape Town, Cape Town, South Africa
3 : Institute of Oceanography, CEN, Universitat Hamburg, Hamburg, Germany
4 : University of Southampton, Southampton, United Kingdom
5 : Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Servicio de Hidrografía Naval and UMI-IFAECI/CNRS, Buenos Aires, Argentina
6 : Scottish Association for Marine Science, Oban, Scotland
7 : National Center for Atmospheric Research, Boulder, CO, United States
8 : Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, United States
9 : University of Rhode Island, Narragansett, RI, United States
10 : Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, FL, United States
11 : Jackson School of Geosciences, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
12 : GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
13 : Met Office Hadley Centre, Exeter, United Kingdom
14 : Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
15 : Nicholas School of the Environment, Duke University, Durham, NC, United States
16 : Laboratoire d'Oceanographie Physique et Spatiale, CNRS, Plouzané, France
17 : Woods Hole Oceanographic Institution, Woods Hole, MA, United States
18 : Center for Marine Environmental Sciences MARUM, Institute for Environmental Physics IUP, Bremen University, Bremen, Germany
19 : Massachusetts Institute of Technology, Cambridge, MA, United States
20 : Department of Environmental Affairs, Cape Town, South Africa
21 : ICARUS, Department of Geography, Maynooth University, Maynooth, Ireland
22 : Laboratoire de Meteorologie Dynamique, UMR 8539 Ecole Polytechnique, ENS, CNRS, Paris, France
23 : National Oceanography Centre, Liverpool, United Kingdom
Source Frontiers In Marine Science (2296-7745) (Frontiers Media SA), 2019-06 , Vol. 6 , N. 260 , P. 18p.
DOI 10.3389/fmars.2019.00260
WOS© Times Cited 9
Keyword(s) meridional overturning circulation, thermohaline circulation, observing systems, ocean heat transport, carbon storage, moorings, circulation variability
Abstract

The Atlantic Meridional Overturning Circulation (AMOC) extends from the Southern Ocean to the northern North Atlantic, transporting heat northwards throughout the South and North Atlantic, and sinking carbon and nutrients into the deep ocean. Climate models indicate that changes to the AMOC both herald and drive climate shifts. Intensive trans-basin AMOC observational systems have been put in place to continuously monitor meridional volume transport variability, and in some cases, heat, freshwater and carbon transport. These observational programs have been used to diagnose the magnitude and origins of transport variability, and to investigate impacts of variability on essential climate variables such as sea surface temperature, ocean heat content and coastal sea level. AMOC observing approaches vary between the different systems, ranging from trans-basin arrays (OSNAP, RAPID 26°N, 11°S, SAMBA 34.5°S) to arrays concentrating on western boundaries (e.g., RAPID WAVE, MOVE 16°N). In this paper, we outline the different approaches (aims, strengths and limitations) and summarize the key results to date. We also discuss alternate approaches for capturing AMOC variability including direct estimates (e.g., using sea level, bottom pressure, and hydrography from autonomous profiling floats), indirect estimates applying budgetary approaches, state estimates or ocean reanalyses, and proxies. Based on the existing observations and their results, and the potential of new observational and formal synthesis approaches, we make suggestions as to how to evaluate a comprehensive, future-proof observational network of the AMOC to deepen our understanding of the AMOC and its role in global climate.

Full Text
File Pages Size Access
Publisher's official version 18 1 MB Open access
Supplementary Material 7 141 KB Open access
Top of the page

How to cite 

Frajka-Williams Eleanor, Ansorge Isabelle J., Baehr Johanna, Bryden Harry L., Chidichimo Maria Paz, Cunningham Stuart A., Danabasoglu Gokhan, Dong Shenfu, Donohue Kathleen A., Elipot Shane, Heimbach Patrick, Holliday N. Penny, Hummels Rebecca, Jackson Laura C., Karstensen Johannes, Lankhorst Matthias, Le Bras Isabela A., Lozier M. Susan, McDonagh Elaine L., Meinen Christopher S., Mercier Herle, Moat Bengamin I., Perez Renellys C, Piecuch Christopher G., Rhein Monika, Srokosz Meric A., Trenberth Kevin E., Bacon Sheldon, Forget Gael, Goni Gustavo, Kieke Dagmar, Koelling Jannes, Lamont Tarron, McCarthy Gerard D., Mertens Christian, Send Uwe, Smeed David A., Speich Sabrina, Van Den Berg Marcel, Volkov Denis, Wilson Chris (2019). Atlantic Meridional Overturning Circulation: Observed Transport and Variability. Frontiers In Marine Science, 6(260), 18p. Publisher's official version : https://doi.org/10.3389/fmars.2019.00260 , Open Access version : https://archimer.ifremer.fr/doc/00503/61507/