Variation in life-history traits of European anchovy along a latitudinal gradient: a bioenergetics modelling approach

Type Article
Date 2019-05
Language English
Author(s) Huret MartinORCID1, Tsiaras K2, Daewel U3, Skogen Md4, Gatti Paul1, Petitgas Pierre5, Somarakis S6
Affiliation(s) 1 : Ifremer, STH/LBH, 29280 Plouzané, France
2 : Hellenic Centre for Marine Research, Anavyssos, Greece
3 : Helmholtz Centre Geesthacht, Institute of Coastal Research, 21502 Geesthacht, Germany
4 : Institute of Marine Research, 5817 Bergen, Norway
5 : Ifremer, EMH, 44311 Nantes, France
6 : Hellenic Centre for Marine Research, Heraklion, Greece
Source Marine Ecology Progress Series (0171-8630) (Inter-Research Science Center), 2019-05 , Vol. 617 , P. 95-112
DOI 10.3354/meps12574
WOS© Times Cited 7
Note Contribution to the Theme Section ‘Drivers of dynamics of small pelagic fish resources: biology, management and human factors’
Keyword(s) Engraulis encrasicolus, Countergradient variation, Growth, Reproduction, Dynamic Energy Budget theory, Bay of Biscay, Aegean Sea, North Sea

Anchovy Engraulis encrasicolus distribution in European waters spans from the Mediterranean Sea to the North Sea, and is expected to expand further north with global warming. Observations from the eastern Mediterranean (North Aegean Sea), the Bay of Biscay and the North Sea reveal latitudinal differences in growth, maximum size, fecundity and timing of reproduction. We set up a mechanistic framework combining a bioenergetics model with regional physical-biogeochemical models providing temperature and zooplankton biomass to investigate the underlying mechanisms of variation in these traits. The bioenergetics model, based on the Dynamic Energy Budget theory and initially calibrated in the Bay of Biscay, was used to simulate growth and reproduction patterns. Environment partly explained the increased growth rate and larger body size towards the north. However, regional calibration of the maximum assimilation rate was necessary to obtain the best model fit. This suggests a genetic adaptation, with a pattern of cogradient variation with increasing resource towards the north, in addition to a countergradient thermal adaptation. Overall, the seasonal energy dynamics supports the pattern of body-size scaling with latitude, i.e. food-limited growth but low maintenance costs in the warm Aegean Sea, and larger size in the North Sea allowing sufficient storage capacity for overwintering. Further, the model suggests a synchronisation of reproductive timing with environmental seasonality as a trade-off between thresholds of temperature and reserves for spawning and overwintering, respectively. Finally, low temperature, short productive and spawning seasons, and insufficient reserves for overwintering appear to be current limitations for an expansion of anchovy to the Norwegian Sea.

Full Text
File Pages Size Access
Publisher's official version 18 843 KB Open access
Top of the page

How to cite 

Huret Martin, Tsiaras K, Daewel U, Skogen Md, Gatti Paul, Petitgas Pierre, Somarakis S (2019). Variation in life-history traits of European anchovy along a latitudinal gradient: a bioenergetics modelling approach. Marine Ecology Progress Series, 617, 95-112. Publisher's official version : , Open Access version :