Modeling the emergence of migratory corridors and foraging hot spots of the green sea turtle

Type Article
Date 2019-09
Language English
Author(s) Dalleau Mayeul1, Kramer‐schadt Stephanie2, 3, Gangat Yassine4, Bourjea JeromeORCID5, Lajoie Gilles6, Grimm Volker7, 8, 9
Affiliation(s) 1 : Centre d'Etude et de Découverte des Tortues Marines (CEDTM) Saint Leu/La Réunion ,France
2 : Department of Ecological Dynamics Leibniz Institute for Zoo and Wildlife Research Berlin, Germany
3 : Department of Ecology Technische Universität Berlin Berlin ,Germany
4 : LIM‐IREMIA, EA2525 University of La Réunion, PTU Sainte‐Clotilde/La Réunion, France
5 : Institut Français de Recherche pour l'Exploitation de la Mer MARBEC Université de Montpellier CNRS Ifremer IRD Sète Cedex ,France
6 : UMR Espace‐Dev University of La Réunion Saint‐Denis ,France
7 : Department of Ecological Modelling Helmholtz Centre for Environmental Research – UFZ Leipzig ,Germany
8 : Department of Plant Ecology and Nature Conservation University of Potsdam Potsdam‐Golm, Germany
9 : German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig ,Germany
Source Ecology And Evolution (2045-7758) (Wiley), 2019-09 , Vol. 9 , N. 18 , P. 10317-10342
DOI 10.1002/ece3.5552
WOS© Times Cited 9
Keyword(s) connectivity, corridors, individual-based model, migration, movement, sea turtle

Environmental factors shape the spatial distribution and dynamics of populations. Understanding how these factors interact with movement behavior is critical for efficient conservation, in particular for migratory species. Adult female green sea turtles, Chelonia mydas, migrate between foraging and nesting sites that are generally separated by thousands of kilometers. As an emblematic endangered species, green turtles have been intensively studied, with a focus on nesting, migration, and foraging. Nevertheless, few attempts integrated these behaviors and their trade‐offs by considering the spatial configurations of foraging and nesting grounds as well as environmental heterogeneity like oceanic currents and food distribution. We developed an individual‐based model to investigate the impact of local environmental conditions on emerging migratory corridors and reproductive output and to thereby identify conservation priority sites. The model integrates movement, nesting, and foraging behavior. Despite being largely conceptual, the model captured realistic movement patterns which confirm field studies. The spatial distribution of migratory corridors and foraging hot spots was mostly constrained by features of the regional landscape, such as nesting site locations, distribution of feeding patches, and oceanic currents. These constraints also explained the mixing patterns in regional forager communities. By implementing alternative decision strategies of the turtles, we found that foraging site fidelity and nesting investment, two characteristics of green turtles' biology, are favorable strategies under unpredictable environmental conditions affecting their habitats. Based on our results, we propose specific guidelines for the regional conservation of green turtles as well as future research suggestions advancing spatial ecology of sea turtles. Being implemented in an easy to learn open‐source software, our model can coevolve with the collection and analysis of new data on energy budget and movement into a generic tool for sea turtle research and conservation. Our modeling approach could also be useful for supporting the conservation of other migratory marine animals.

Full Text
File Pages Size Access
Publisher's official version 26 3 MB Open access
Supporting Information 5 1 MB Open access
Top of the page

How to cite 

Dalleau Mayeul, Kramer‐schadt Stephanie, Gangat Yassine, Bourjea Jerome, Lajoie Gilles, Grimm Volker (2019). Modeling the emergence of migratory corridors and foraging hot spots of the green sea turtle. Ecology And Evolution, 9(18), 10317-10342. Publisher's official version : , Open Access version :