Raman Tweezers for Small Microplastics and Nanoplastics Identification in Seawater

Type Article
Date 2019-08
Language English
Author(s) Gillibert Raymond1, Balakrishnan Gireeshkumar2, Deshoules Quentin3, Tardivel Morgan3, Magazzu Alessandro4, Donato Maria Grazia1, Marago Onofrio M.1, Lamy De La Chapelle Marc3, Colas FlorentORCID4, Lagarde Fabienne3, Gucciardi Pietro G.1
Affiliation(s) 1 : CNR IPCF, Ist & Proc Chim Fis, Viale F Stagno DAlcontres 27, I-98158 Messina, Italy.
2 : Le Mans Univ, UMR CNRS 6283, Inst Mol & Mat Mans, F-72085 Le Mans, France.
3 : IFREMER, LDCM, Ctr Bretagne, CS 10070, F-29280 Plouzane, France.
4 : Univ Gothenburg, Dept Phys, S-41296 Gothenburg, Sweden.
Source Environmental Science & Technology (0013-936X) (Amer Chemical Soc), 2019-08 , Vol. 53 , N. 15 , P. 9003-9013
DOI 10.1021/acs.est.9b03105
WOS© Times Cited 131
Abstract

Our understanding of the fate and distribution of micro- and nano- plastics in the marine environment is limited by the intrinsic difficulties of the techniques currently used for the detection, quantification, and chemical identification of small particles in liquid (light scattering, vibrational spectroscopies, and optical and electron microscopies). Here we introduce Raman Tweezers (RTs), namely optical tweezers combined with Raman spectroscopy, as an analytical tool for the study of micro- and nanoplastics in seawater. We show optical trapping and chemical identification of sub-20 mu m plastics, down to the 50 nm range. Analysis at the single particle level allows us to unambiguously discriminate plastics from organic matter and mineral sediments, overcoming the capacities of standard Raman spectroscopy in liquid, intrinsically limited to ensemble measurements. Being a microscopy technique, RTs also permits one to assess the size and shapes of particles (beads, fragments, and fibers), with spatial resolution only limited by diffraction. Applications are shown on both model particles and naturally aged environmental samples, made of common plastic pollutants, including polyethylene, polypropylene, nylon, and polystyrene, also in the presence of a thin ecocorona. Coupled to suitable extraction and concentration protocols, RTs have the potential to strongly impact future research on micro and nanoplastics environmental pollution, and enable the understanding of the fragmentation processes on a multiscale level of aged polymers.

Full Text
File Pages Size Access
11 3 MB Access on demand
31 842 KB Access on demand
6 MB Access on demand
3 MB Access on demand
9 MB Access on demand
Preprint 49 2 MB Open access
Top of the page

How to cite 

Gillibert Raymond, Balakrishnan Gireeshkumar, Deshoules Quentin, Tardivel Morgan, Magazzu Alessandro, Donato Maria Grazia, Marago Onofrio M., Lamy De La Chapelle Marc, Colas Florent, Lagarde Fabienne, Gucciardi Pietro G. (2019). Raman Tweezers for Small Microplastics and Nanoplastics Identification in Seawater. Environmental Science & Technology, 53(15), 9003-9013. Publisher's official version : https://doi.org/10.1021/acs.est.9b03105 , Open Access version : https://archimer.ifremer.fr/doc/00512/62376/