Quantifying the Impact of Linear Regression Model in Deriving Bio-Optical Relationships: The Implications on Ocean Carbon Estimations

Type Article
Date 2019-07
Language English
Author(s) Bellacicco Marco1, 2, Vellucci Vincenzo3, Scardi Michele4, Barbieux Marie1, Marullo Salvatore2, D'Ortenzio Fabrizio1
Affiliation(s) 1 : Sorbonne Univ, CNRS, LOV, F-06230 Villefranche Sur Mer, France.
2 : Italian Natl Agcy New Technol Energy & Sustainabl, I-00044 Frascati, Italy.
3 : Sorbonne Univ, CNRS, Inst Mer Villefranche, IMEV, F-06230 Villefranche Sur Mer, France.
4 : Univ Roma Tor Vergata, Dept Biol, I-00133 Rome, Italy.
Source Sensors (1424-8220) (Mdpi), 2019-07 , Vol. 19 , N. 13 , P. 3032 (15p.)
DOI 10.3390/s19133032
WOS© Times Cited 7
Note the Special Issue Remote Sensing of Ocean Colour: Theory and Applications
Keyword(s) linear regression methods, bio-optical properties, BGC-Argo, satellite oceanography
Abstract

Linear regression is widely used in applied sciences and, in particular, in satellite optical oceanography, to relate dependent to independent variables. It is often adopted to establish empirical algorithms based on a finite set of measurements, which are later applied to observations on a larger scale from platforms such as autonomous profiling floats equipped with optical instruments (e.g., Biogeochemical Argo floats; BGC-Argo floats) and satellite ocean colour sensors (e.g., SeaWiFS, VIIRS, OLCI). However, different methods can be applied to a given pair of variables to determine the coefficients of the linear equation fitting the data, which are therefore not unique. In this work, we quantify the impact of the choice of regression method (i.e., either type-I or type-II) to derive bio-optical relationships, both from theoretical perspectives and by using specific examples. We have applied usual regression methods to an in situ data set of particulate organic carbon (POC), total chlorophyll-a (TChla), optical particulate backscattering coefficient (b(bp)), and 19 years of monthly TChla and b(bp) ocean colour data. Results of the regression analysis have been used to calculate phytoplankton carbon biomass (C-phyto) and POC from: i) BGC-Argo float observations; ii) oceanographic cruises, and iii) satellite data. These applications enable highlighting the differences in C-phyto and POC estimates relative to the choice of the method. An analysis of the statistical properties of the dataset and a detailed description of the hypothesis of the work drive the selection of the linear regression method.

Full Text
File Pages Size Access
Publisher's official version 15 1 MB Open access
Top of the page

How to cite 

Bellacicco Marco, Vellucci Vincenzo, Scardi Michele, Barbieux Marie, Marullo Salvatore, D'Ortenzio Fabrizio (2019). Quantifying the Impact of Linear Regression Model in Deriving Bio-Optical Relationships: The Implications on Ocean Carbon Estimations. Sensors, 19(13), 3032 (15p.). Publisher's official version : https://doi.org/10.3390/s19133032 , Open Access version : https://archimer.ifremer.fr/doc/00585/69689/