Effects of light and nitrogen availability on photosynthetic efficiency and fatty acid content of three original benthic diatom strains

Type Article
Date 2019-11
Language English
Author(s) Cointet Eva1, Wielgosz-Collin Gaëtane1, Bougaran GaelORCID2, Rabesaotra Vony1, Gonçalves Olivier3, Méléder Vona1
Affiliation(s) 1 : Université de Nantes, Laboratoire Mer Molécules Santé, Nantes, France
2 : PBA-IFREMER, Nantes, France
3 : Université de Nantes, GEPEA, Saint-Nazaire, Nantes, France
Source Plos One (1932-6203) (Public Library of Science (PLoS)), 2019-11 , Vol. 14 , N. 11 , P. e0224701 (28p.)
DOI 10.1371/journal.pone.0224701
WOS© Times Cited 37

Microalgal biotechnology has gained considerable importance in recent decades. Applications range from simple biomass production for food and animal feed to valuable products for fuel, pharmaceuticals, health, biomolecules and materials relevant to nanotechnology. There are few reports of the exploration of wider microalgae biodiversity in the literature on high value microalgal compounds, however, because it is believed that there is little to be gained in terms of biomass productivity by examining new strains. Still, without diversity, innovation in biotechnology applications is currently limited. Using microalgal diversity is a very promising way to match species and processes for a specific biotechnological application. In this context, three benthic marine diatom strains (Entomoneis paludosa NCC18.2, Nitzschia alexandrina NCC33, and Staurosira sp NCC182) were selected for their lipid production and growth capacities. Using PAM fluorometry and FTIR spectroscopy, this study investigated the impact of nitrogen repletion and depletion as well as light intensity (30, 100, and 400 μmol.photons.m-2.s-1) on their growth, photosynthetic performance and macromolecular content, with the aim of improving the quality of their lipid composition. Results suggest that under high light and nitrogen limitation, the photosynthetic machinery is negatively impacted, leading cells to reduce their growth and accumulate lipids and/or carbohydrates. However, increasing lipid content under stressful conditions does not increase the production of lipids of interest: PUFA, ARA and EPA production decreases. Culture conditions to optimize production of such fatty acids in these three original strains led to a balance between economic and ecophysiological constraints: low light and no nitrogen limitation led to better photosynthetic capacities associated with energy savings, and hence a more profitable approach.

Full Text
File Pages Size Access
Publisher's official version 28 2 MB Open access
Top of the page

How to cite 

Cointet Eva, Wielgosz-Collin Gaëtane, Bougaran Gael, Rabesaotra Vony, Gonçalves Olivier, Méléder Vona (2019). Effects of light and nitrogen availability on photosynthetic efficiency and fatty acid content of three original benthic diatom strains. Plos One, 14(11), e0224701 (28p.). Publisher's official version : https://doi.org/10.1371/journal.pone.0224701 , Open Access version : https://archimer.ifremer.fr/doc/00591/70269/