The 2016 red tide crisis in southern Chile: Possible influence of the mass oceanic dumping of dead salmons

Type Article
Date 2020-01
Language English
Author(s) Armijo Julien1, 2, Oerder Vera3, Auger Pierre-Amaël3, 4, Bravo Angela5, Molina Ernesto6
Affiliation(s) 1 : Pontificia Universidad Católica de Chile, Santiago, Chile
2 : Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Santiago, Chile
3 : Instituto Milenio de Oceanografía and Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
4 : Laboratoire d’Océanographie Physique et Spatiale, Université de Brest, CNRS, IRD, Ifremer, Brest, France
5 : Universidad de Chile, Santiago, Chile
6 : Universidad de Santiago, Santiago, Chile
Source Marine Pollution Bulletin (0025-326X) (Elsevier BV), 2020-01 , Vol. 150 , P. 110603 (19p.)
DOI 10.1016/j.marpolbul.2019.110603
WOS© Times Cited 32
Keyword(s) Harmful algal blooms, Aquaculture, Pollution control, Ocean transport, Ecological crisis, Risk management
Abstract

In 2016, a massive harmful algal bloom (HAB) of Alexandrium catenella around Chiloé island caused one of the major socio-ecological crisis in Chilean history. This red tide occurred in two distinct pulses, the second, most anomalous, bursting with extreme toxicity on the Pacific coast, weeks after the highly controversial dumping off Chiloé of 4,700 t of rotting salmons, killed by a previous HAB of Pseudochattonella verruculosa. We study the transport of this pollution, analyzing the physical oceanographic conditions during and after the dumping. We find that a cyclonic gyre was present between the dumping site and the coast, visible in satellite altimetry and sea surface temperature data. Using Lagrangian simulations, we confirm that near-surface currents could have brought part of the pollution to the coast, and fueled the bloom. This scenario explains also the anomalous later finding of ammonium near Chiloé. Finally we discuss the mismanagement of risk throughout the events.

Full Text
File Pages Size Access
19 13 MB Access on demand
Author's final draft 24 7 MB Open access
Top of the page