Supplementation of live yeast based feed additive in early life promotes rumen microbial colonization and fibrolytic potential in lambs

Type Article
Date 2019-12
Language English
Author(s) Chaucheyras-Durand Frederique1, 2, Ameilbonne Aurelie1, 2, Auffret Pauline2, Bernard Mickael3, Mialon Marie-Madeleine4, Duniere Lysiane1, 2, Forano Evelyne2
Affiliation(s) 1 : Lallemand SAS, F-31702 Blagnac, France.
2 : Univ Clermont Auvergne, INRA, UMR 454, MEDIS, F-63000 Clermont Ferrand, France.
3 : INRA Auvergne Rhone Alpes, UE 1414, Herbipole, St Genes Champanelle, France.
4 : Univ Clermont Auvergne, INRA, VetAgro Sup, Herbivores,UMR 1213, F-63000 Clermont Ferrand, France.
Source Scientific Reports (2045-2322) (Nature Publishing Group), 2019-12 , Vol. 9 , P. 19216 (16p.)
DOI 10.1038/s41598-019-55825-0
WOS© Times Cited 23

Rumen microbiota is of paramount importance for ruminant digestion efficiency as the microbial fermentations supply the host animal with essential sources of energy and nitrogen. Early separation of newborns from the dam and distribution of artificial milk (Artificial Milking System or AMS) could impair rumen microbial colonization, which would not only affect rumen function but also have possible negative effects on hindgut homeostasis, and impact animal health and performance. In this study, we monitored microbial communities in the rumen and the feces of 16 lambs separated from their dams from 12 h of age and artificially fed with milk replacer and starter feed from d8, in absence or presence of a combination of the live yeast Saccharomyces cerevisiae CNCM I-1077 and selected yeast metabolites. Microbial groups and targeted bacterial species were quantified by qPCR and microbial diversity and composition were assessed by 16S rDNA amplicon sequencing in samples collected from birth to 2 months of age. The fibrolytic potential of the rumen microbiota was analyzed with a DNA microarray targeting genes coding for 8 glycoside hydrolase (GH) families. In Control lambs, poor establishment of fibrolytic communities was observed. Microbial composition shifted as the lambs aged. The live yeast supplement induced significant changes in relative abundances of a few bacterial OTUs across time in the rumen samples, among which some involved in crucial rumen function, and favored establishment of Trichostomatia and Neocallimastigaceae eukaryotic families. The supplemented lambs also harbored greater abundances in Fibrobacter succinogenes after weaning. Microarray data indicated that key cellulase and hemicellulase encoding-genes were present from early age in the rumen and that in the Supplemented lambs, a greater proportion of hemicellulase genes was present. Moreover, a higher proportion of GH genes from ciliate protozoa and fungi was found in the rumen of those animals. This yeast combination improved microbial colonization in the maturing rumen, with a potentially more specialized ecosystem towards efficient fiber degradation, which suggests a possible positive impact on lamb gut development and digestive efficiency.

Full Text
File Pages Size Access
Publisher's official version 16 1 MB Open access
Supplementary information 16 302 KB Open access
Top of the page

How to cite 

Chaucheyras-Durand Frederique, Ameilbonne Aurelie, Auffret Pauline, Bernard Mickael, Mialon Marie-Madeleine, Duniere Lysiane, Forano Evelyne (2019). Supplementation of live yeast based feed additive in early life promotes rumen microbial colonization and fibrolytic potential in lambs. Scientific Reports, 9, 19216 (16p.). Publisher's official version : , Open Access version :