Deep-ocean mixing driven by small-scale internal tides

Turbulent mixing in the ocean is key to regulate the transport of heat, freshwater and biogeochemical tracers, with strong implications for Earth's climate. In the deep ocean, tides supply much of the mechanical energy required to sustain mixing via the generation of internal waves, known as internal tides, whose fate-the relative importance of their local versus remote breaking into turbulence-remains uncertain. Here, we combine a semi-analytical model of internal tide generation with satellite and in situ measurements to show that from an energetic viewpoint, small-scale internal tides, hitherto overlooked, account for the bulk (>50%) of global internal tide generation, breaking and mixing. Furthermore, we unveil the pronounced geographical variations of their energy proportion, ignored by current parameterisations of mixing in climate-scale models. Based on these results, we propose a physically consistent, observationally supported approach to accurately represent the dissipation of small-scale internal tides and their induced mixing in climate-scale models.

Full Text

Publisher's official version
95 Mo
Supplementary Information
101 Mo
How to cite
Vic Clement, Naveira Garabato Alberto C., Green J. A. Mattias, Waterhouse Amy F., Zhao Zhongxiang, Melet Angelique, de Lavergne Casimir, Buijsman Maarten C., Stephenson Gordon R. (2019). Deep-ocean mixing driven by small-scale internal tides. Nature Communications. 10 (2099). 9p..,

Copy this text