Copy this text
Reduction of potential ennoblement of stainless steel in natural seawater by an ecofriendly biopolymer
The effect of biofilm formation on passive stainless steel in seawater environments is of primary importance since it leads to potential ennoblement of surfaces and subsequently to localized corrosion such as pitting and crevice corrosion. This study aims at developing an ecofriendly alginate biopolymer containing both non-toxic calcium and a limited amount of biocidal zinc ions which inhibits this effect. For this purpose, calcium alginate containing less than 1 % of zinc ions localized in the vicinity of the steel surface in natural and renewed seawater is demonstrated to reduce significantly the ennoblement process of steel. After 1 month of immersion, a mass loss of only 4 % of the active material is observed authorizing thereby long-term protection of steel in real environment.
Keyword(s)
Biopolymer, Steel, Ennoblement, Antimicrobial, Alginate, Biofilm
Full Text
File | Pages | Size | Access | |
---|---|---|---|---|
Publisher's official version | 4 | 386 Ko | ||
Appendix A. Supplementary data | 1 | 484 Ko | ||
Author's final draft | 10 | 656 Ko |