Sea Surface Dynamics Reconstruction Using Neural Networks Based Kalman Filter

In this work, we propose an alternative to the Ensemble Kalman filter through the implementation of a neural networks filtering scheme based on a parametric stochastic model. From our numerical experiment, we prove the relevance of the proposed architecture in the reconstruction of geophysical fields with respect to the state-of-the-art schemes.

Keyword(s)

Neural networks, Kalman filter, Stochastic models

Full Text

FilePagesSizeAccess
Publisher's official version
4226 Ko
Author's final draft
5227 Ko
How to cite
Ouala Said, Fablet Ronan, Herzet Cedric, Drumetz Lucas, Chapron Bertrand, Pascual Ananda, Collard Fabrice, Gaultier Lucile (2019). Sea Surface Dynamics Reconstruction Using Neural Networks Based Kalman Filter. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium (IEEE), Electronic ISBN: 978-1-5386-9154-0 USB ISBN: 978-1-5386-9153-3 Print on Demand(PoD) ISBN: 978-1-5386-9155-7, Electronic ISSN: 2153-7003 Print on Demand(PoD) ISSN: 2153-6996, pp.10059-10062. https://doi.org/10.1109/IGARSS.2019.8898086, https://archimer.ifremer.fr/doc/00604/71617/

Copy this text