A new climate index controlling winter wave activity along the Atlantic coast of Europe: The West Europe Pressure Anomaly

Type Article
Date 2017-02
Language English
Author(s) Castelle BrunoORCID1, 2, Dodet GuillaumeORCID3, Masselink GerdORCID4, Scott Tim4
Affiliation(s) 1 : CNRS, UMR EPOC, Pessac, France.
2 : Univ Bordeaux, UMR EPOC, Pessac, France.
3 : Inst Univ Europeen Mer UBO, LETG Brest Geomer UMR CNRS 6554, Plouzane, France.
4 : Univ Plymouth, Sch Biol & Marine Sci, Coastal Proc Res Grp, Plymouth, Devon, England.
Source Geophysical Research Letters (0094-8276) (Amer Geophysical Union), 2017-02 , Vol. 44 , N. 3 , P. 1384-1392
DOI 10.1002/2016GL072379
WOS© Times Cited 85
Abstract

A pioneering and replicable method based on a 66-year numerical weather and wave hindcast is developed to optimize a climate index based on the sea level pressure (SLP) that best explains winter wave height variability along the coast of western Europe, from Portugal to UK (36-52 degrees N). The resulting so-called Western Europe Pressure Anomaly (WEPA) is based on the sea level pressure gradient between the stations Valentia (Ireland) and Santa Cruz de Tenerife (Canary Islands). The WEPA positive phase reflects an intensified and southward shifted SLP difference between the Icelandic low and the Azores high, driving severe storms that funnel high-energy waves toward western Europe southward of 52 degrees N. WEPA outscores by 25-150% the other leading atmospheric modes in explaining winter-averaged significant wave height, and even by a largest amount the winter-averaged extreme wave heights. WEPA is also the only index capturing the 2013/2014 extreme winter that caused widespread coastal erosion and flooding in western Europe.

Full Text
File Pages Size Access
Publisher's official version 9 1 MB Open access
Text S1 1 KB Open access
Top of the page