Linking Danube River Activity to Alpine Ice-Sheet Fluctuations during the Last Glacial (ca. 33-17 ka BP): insights into the continental signature of Heinrich Stadials

Type Article
Date 2020-02
Language English
Author(s) Martinez-Lamas Ruth1, 2, Toucanne SamuelORCID2, Debret Maxime1, Riboulot VincentORCID2, Deloffre Julien1, Boissier AudreyORCID2, Cheron Sandrine2, Pitel Mathilde2, Bayon Germain2, Giosan Liviu3, Soulet GuillaumeORCID2
Affiliation(s) 1 : Normandie Univ, UNIROUEN, CNRS, UNICAEN,M2C, F-76000 Rouen, France.
2 : IFREMER, Unite Rech Geosci Marines, F-29280 Plouzane, France.
3 : Woods Hole Oceanog Inst, Dept Geol & Geophys, 266 Woods Hole Rd, Woods Hole, MA 02543 USA.
Source Quaternary Science Reviews (0277-3791) (Pergamon-elsevier Science Ltd), 2020-02 , Vol. 229 , P. 106136 (24p.)
DOI 10.1016/j.quascirev.2019.106136
WOS© Times Cited 7
Keyword(s) Danube river, Floods, Hyperpycnites, Alpine ice sheet, Heinrich stadials, Seasonality, Black sea
Abstract

Offshore archives retrieved from marine/lacustrine environments receiving sediment from large river systems are valuable Quaternary continental records. In the present study, we reconstruct the Danube River activity at the end of the last glacial period based on sedimentological, mineralogical and geochemical analyses performed on long-piston cores from the north-west Black Sea margin. Our data suggest that the Danube River produced hyperpycnal floods throughout the ca. 33-17 ka period. Four main periods of enhanced Danube flood frequency, each of 1.5-3 kyr duration, are recorded at ca. 32.5 30.5 ka (equivalent to the first part of Heinrich Stadial HS 3), at ca. 29-27.5 ka (equivalent to Greenland Stadial 4), at ca. 25.3-23.8 ka (equivalent to HS 2) and at ca. 22.3-19 ka. Based on mineralogical and geochemical data, we relate these events to enhanced surface melting of the Alpine Ice Sheet (AIS) that covered -50,000 km2 of the Danube watershed at the Last Glacial Maximum (LGM). Our results suggest that (i) the AIS growth from the inner Alps to its LGM position in the northern Alpine foreland started from ca. 30.5 ka, ended no later than ca. 25.3 ka, and was interrupted by a melting episode ca. 29 27.5 ka; (ii) the AIS volume drastically decreased from ca. 22.3 to 19 ka, as soon as summer insolation energy at the AIS latitude increased; and (iii) HSs strongly impacted the AIS mass balance through enhanced summer surface melt. This, together with evidence of severely cool winters and the rapid expansion of sea ice in the North Atlantic, implies strong seasonality in continental Europe during stadials. (C) 2019 Elsevier Ltd. All rights reserved.

Full Text
File Pages Size Access
24 8 MB Access on demand
442 bytes Access on demand
10 595 KB Access on demand
Author's final draft 142 34 MB Open access
Top of the page

How to cite 

Martinez-Lamas Ruth, Toucanne Samuel, Debret Maxime, Riboulot Vincent, Deloffre Julien, Boissier Audrey, Cheron Sandrine, Pitel Mathilde, Bayon Germain, Giosan Liviu, Soulet Guillaume (2020). Linking Danube River Activity to Alpine Ice-Sheet Fluctuations during the Last Glacial (ca. 33-17 ka BP): insights into the continental signature of Heinrich Stadials. Quaternary Science Reviews, 229, 106136 (24p.). Publisher's official version : https://doi.org/10.1016/j.quascirev.2019.106136 , Open Access version : https://archimer.ifremer.fr/doc/00613/72556/