Neodymium isotope constraints on chemical weathering and past glacial activity in Svalbard

Type Article
Date 2020-07
Language English
Author(s) Jang Kwangchul1, Bayon Germain2, Han Yeongcheol1, Joo Young Ji1, Kim Ji-Hoon3, Ryu Jong-Sik4, Woo Jusun5, Forwick Matthias6, Szczuciński Witold7, Kim Jung-Hyun1, Nam Seung-Il1
Affiliation(s) 1 : Division of Polar Paleoenvironment, Korea Polar Research Institute, Incheon 21990, South Korea
2 : IFREMER, Marine Geosciences Unit F-29280 Plouzané, France
3 : Petroleum and Marine Resources Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, South Korea
4 : Department of Earth and Environmental Sciences, Pukyong National University, Busan 48513, South Korea
5 : School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, South Korea
6 : UiT The Arctic University of Norway, Department of Geosciences, NO-9037 Tromsø, Norway
7 : Geohazards Lab, Institute of Geology, Adam Mickiewicz University in Poznań, 61-680 Poznań, Poland
Source Earth And Planetary Science Letters (0012-821X) (Elsevier BV), 2020-07 , Vol. 542 , P. 116319 (12p.)
DOI 10.1016/j.epsl.2020.116319
WOS© Times Cited 6
Keyword(s) neodymium isotopes, isotopic decoupling, incongruent weathering, glacier fluctuation, Svalbard
Abstract

Neodymium (Nd) isotopes in leached authigenic components of marine sediments have been increasingly used as a tracer of past ocean-water masses. Despite the general assumption that the Nd isotopic composition of solutes released during chemical weathering fingerprints the source rocks on continents, preferential dissolution of easily dissolvable phases may result in significant deviations in Nd isotopic composition between the solutes and the source rocks, with potential implications for the utility of Nd isotopes in paleoenvironmental studies. Here, we present the Nd isotopic compositions of leached and detrital fractions separated from bedrock and marine sediment samples from the Svalbard archipelago. Our goal is to further understand the behaviour of Nd isotopes during chemical weathering in glacial catchments and evaluate how glacier fluctuations and associated weathering congruency may have affected the export of dissolved Nd isotope signatures to seawater.

Our results confirm that terrestrial weathering on Svalbard causes considerable Nd isotopic decoupling between the leached and detrital fractions of fjord sediments (△εNd), resulting from the preferential dissolution of marine precipitates in glaciated catchments dominated by sedimentary rocks. We also show that the degree of Nd isotopic decoupling has fluctuated in response to climate variability on Svalbard during the Holocene, which is also as suggested by the occurrence of generally higher △εNd values during periods of glacier advances in sediment cores retrieved from two different fjords (Dicksonfjorden and Woodfjorden). We posit that the high △εNd values can be ascribed to incongruent chemical weathering of fresh rock flour produced by glacial abrasion. This finding suggests that the degree of Nd isotopic decoupling could be used as a new proxy for tracing glacial fluctuations and associated glacier-derived nutrient inputs to the marine realm.

Full Text
File Pages Size Access
12 4 MB Access on demand
10 597 KB Access on demand
Author's final draft 33 2 MB Open access
Top of the page

How to cite 

Jang Kwangchul, Bayon Germain, Han Yeongcheol, Joo Young Ji, Kim Ji-Hoon, Ryu Jong-Sik, Woo Jusun, Forwick Matthias, Szczuciński Witold, Kim Jung-Hyun, Nam Seung-Il (2020). Neodymium isotope constraints on chemical weathering and past glacial activity in Svalbard. Earth And Planetary Science Letters, 542, 116319 (12p.). Publisher's official version : https://doi.org/10.1016/j.epsl.2020.116319 , Open Access version : https://archimer.ifremer.fr/doc/00630/74176/