Bisnorgammacerane traces predatory pressure and the persistent rise of algal ecosystems after Snowball Earth
Type | Article | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | 2019-01 | ||||||||||||||||||||||||
Language | English | ||||||||||||||||||||||||
Author(s) | Van Maldegem Lennart M.1, 2, 17, Sansjofre Pierre3, Weijers Johan W. H.4, Wolkenstein Klaus5, 6, Strother Paul K.7, Woermer Lars2, Hefter Jens![]() ![]() |
||||||||||||||||||||||||
Affiliation(s) | 1 : Max Planck Inst Biogeochem, Hans Knoell Str 10, D-07745 Jena, Germany. 2 : Univ Bremen, MARUM Ctr Marine Environm Sci, Leobener Str 8, D-28359 Bremen, Germany. 3 : Univ Bretagne Occidentale, Lab Geosci Ocean, UMR 6538, Pl Copern, F-29280 Plouzane, France. 4 : Shell Global Solut Int BV, Grasweg 31, NL-1031 HW Amsterdam, Netherlands. 5 : Max Planck Inst Biophys Chem, Fassberg 11, D-37077 Gottingen, Germany. 6 : Univ Gottingen, Geosci Ctr, Dept Geobiol, Goldschmidt Str 3, D-37077 Gottingen, Germany. 7 : Boston Coll, Dept Earth & Environm Sci, Weston, MA 02493 USA. 8 : Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Handelshaven 12, D-27570 Bremerhaven, Germany. 9 : Royal Netherlands Inst Sea Res NIOZ, Dept Marine Microbiol & Biogeochem, POB 59, NL-1790 AB Den Burg, Netherlands. 10 : Univ Utrecht, POB 59, NL-1790 AB Den Burg, Netherlands. 11 : Univ Utrecht, Dept Earth Sci, POB 80-02, NL-3508 TA Utrecht, Netherlands. 12 : Gauhati Univ, Dept Chem, Gauhati 781014, Assam, India. 13 : Russian Acad Sci, Geol Inst, Pygevsky 7, Moscow 119017, Russia. 14 : Gubkin Russian State Univ Oil & Gas, Leninsky Pr 65, Moscow 119991, Russia. 15 : Russian Acad Sci, Schmidt Inst Phys Earth, Bolshaya Gruzinskaya Str 10-1, Moscow 123242, Russia. 16 : PDO, POB 81, Muscat 100, Oman. 17 : Australian Natl Univ, Res Sch Earth Sci, 142 Mills Rd, Canberra, ACT 2601, Australia. 18 : Georgia Inst Technol, Sch Biol Sci, 310 Ferst Dr NW, Atlanta, GA 30322 USA. |
||||||||||||||||||||||||
Source | Nature Communications (2041-1723) (Nature Publishing Group), 2019-01 , Vol. 10 , P. 476 (11p.) | ||||||||||||||||||||||||
DOI | 10.1038/s41467-019-08306-x | ||||||||||||||||||||||||
WOS© Times Cited | 22 | ||||||||||||||||||||||||
Abstract | Eukaryotic algae rose to ecological relevance after the Neoproterozoic Snowball Earth glaciations, but the causes for this consequential evolutionary transition remain enigmatic. Cap carbonates were globally deposited directly after these glaciations, but they are usually organic barren or thermally overprinted. Here we show that uniquely-preserved cap dolostones of the Araras Group contain exceptional abundances of a newly identified biomarker: 25,28-bisnorgammacerane. Its secular occurrence, carbon isotope systematics and co-occurrence with other demethylated terpenoids suggest a mechanistic connection to extensive microbial degradation of ciliate-derived biomass in bacterially dominated ecosystems. Declining 25,28-bisnorgammacerane concentrations, and a parallel rise of steranes over hopanes, indicate the transition from a bacterial to eukaryotic dominated ecosystem after the Marinoan deglaciation. Nutrient levels already increased during the Cryogenian and were a prerequisite, but not the ultimate driver for the algal rise. Intense predatory pressure by bacterivorous protists may have irrevocably cleared self-sustaining cyanobacterial ecosystems, thereby creating the ecological opportunity that allowed for the persistent rise of eukaryotic algae to global importance. |
||||||||||||||||||||||||
Full Text |
|