Syn-eruptive, soft-sediment deformation of deposits from dilute pyroclastic density current: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves

Type Article
Date 2015
Language English
Author(s) Douillet G. A.1, Taisne B.2, Tsang-Hin-Sun Eve3, 4, Mueller S. K.5, Kueppers U.1, Dingwell D. B.1
Affiliation(s) 1 : Univ Munich, Earth & Environm Sci, Munich, Germany.
2 : Nanyang Technol Univ, Earth Observ Singapore, Singapore 639798, Singapore.
3 : Univ Brest, Plouzane, France.
4 : CNRS, Lab Domaines Ocean, Plouzare, France.
5 : Univ Munich, Inst Meteorol, D-80539 Munich, Germany.
Source Solid Earth (1869-9510) (Copernicus Gesellschaft Mbh), 2015 , Vol. 6 , N. 2 , P. 553-572
DOI 10.5194/se-6-553-2015
WOS© Times Cited 11
Abstract Soft-sediment deformation structures can provide valuable information about the conditions of parent flows, the sediment state and the surrounding environment. Here, examples of soft-sediment deformation in deposits of dilute pyroclastic density currents are documented and possible syn-eruptive triggers suggested. Outcrops from six different volcanoes have been compiled in order to provide a broad perspective on the variety of structures: SoufriSre Hills (Montserrat), Tungurahua (Ecuador), Ubehebe craters (USA), Laacher See (Germany), and Tower Hill and Purrumbete lakes (both Australia). The variety of features can be classified in four groups: (1) tubular features such as pipes; (2) isolated, laterally oriented deformation such as overturned or oversteepened laminations and vortex-shaped laminae; (3) folds-and-faults structures involving thick (> 30 cm) units; (4) dominantly vertical inter-penetration of two layers such as potatoids, dishes, or diapiric flame-like structures. The occurrence of degassing pipes together with basal intrusions suggest fluidization during flow stages, and can facilitate the development of other soft-sediment deformation structures. Variations from injection dikes to suction-driven, local uplifts at the base of outcrops indicate the role of dynamic pore pressure. Isolated, centimeter-scale, overturned beds with vortex forms have been interpreted to be the signature of shear instabilities occurring at the boundary of two granular media. They may represent the frozen record of granular, pseudo Kelvin-Helmholtz instabilities. Their recognition can be a diagnostic for flows with a granular basal boundary layer. Vertical inter-penetration and those folds-and-faults features related to slumps are driven by their excess weight and occur after deposition but penecontemporaneous to the eruption. The passage of shock waves emanating from the vent may also produce trains of isolated, fine-grained overturned beds that disturb the surface bedding without occurrence of a sedimentation phase in the vicinity of explosion centers. Finally, ballistic impacts can trigger unconventional sags producing local displacement or liquefaction. Based on the deformation depth, these can yield precise insights into depositional unit boundaries. Such impact structures may also be at the origin of some of the steep truncation planes visible at the base of the so-called 'chute and pool' structures. Dilute pyroclastic density currents occur contemporaneously with seismogenic volcanic explosions. They can experience extremely high sedimentation rates and may flow at the border between traction, granular and fluid-escape boundary zones. They are often deposited on steep slopes and can incorporate large amounts of water and gas in the sediment. These are just some of the many possible triggers acting in a single environment, and they reveal the potential for insights into the eruptive and flow mechanisms of dilute pyroclastic density currents.
Full Text
File Pages Size Access
Publisher's official version 20 7 MB Open access
Preprint 42 8 MB Open access
Top of the page

How to cite 

Douillet G. A., Taisne B., Tsang-Hin-Sun Eve, Mueller S. K., Kueppers U., Dingwell D. B. (2015). Syn-eruptive, soft-sediment deformation of deposits from dilute pyroclastic density current: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves. Solid Earth, 6(2), 553-572. Publisher's official version : , Open Access version :