Global patterns and predictors of trophic position, body size and jaw size in fishes

Type Article
Date 2021-02
Language English
Author(s) Kopf R. Keller1, 2, Yen Jian D. L.3, Nimmo Dale G.2, Brosse Sébastien4, Villeger Sébastien5, Tittensor Derek
Affiliation(s) 1 : Research Institute for the Environment and Livelihoods Charles Darwin University Darwin Northern Territory ,Australia
2 : Institute for Land Water & Society Charles Sturt University Albury New South Wales, Australia
3 : School of BioSciences The University of Melbourne Parkville Victoria ,Australia
4 : Laboratoire Évolution & Diversité Biologique (EDB UMR5174) Université Paul Sabatier ‐ Toulouse 3, CNRS, IRD, UPS Toulouse Cedex ,France
5 : MARBEC, University Montpellier, CNRS, IFREMER, IRD Montpellier ,France
Source Global Ecology And Biogeography (1466-822X) (Wiley), 2021-02 , Vol. 30 , N. 2 , P. 414-428
DOI 10.1111/geb.13227
WOS© Times Cited 4
Keyword(s) allometric trophic network models, allometry, body mass, gape limitation, machine learning, predator&#8211, prey, random forest, trophic network theory


The aim of this study was test whether maximum body mass and jaw length are reliable predictors of trophic position (TP) in fishes, and to compare linear and nonlinear machine‐learning (ML) models incorporating biogeography, habitat and other morphological traits.



Time period


Major taxa studied



We compiled a global database of TP (2.0–4.5), maximum body mass, jaw length, order, ecoregion, habitat and other morphological traits of freshwater, estuarine and diadromous fishes (n = 1,991). We used Bayesian linear mixed effects and ML, with r2 analogues and 10‐fold cross‐validation, to explain and predict TP.


Random forest models outperformed Bayesian models in all comparisons. Jaw length was the most influential predictor of TP, but was weakly associated with body mass except in five orders of largely piscivorous fishes. Trophic position did not scale positively with body mass in global ecoregions, riverine fishes, or in 29/30 orders, but scaled positively in lacustrine fishes and Perciformes. Significant negative TP–body mass scaling was observed in Characiformes. Best models explained 55% of the global variation in TP, but over‐estimated the position of herbivores‐detritivores, and under‐estimated the position of top predators.

Main conclusions

Our study provides support for jaw length as an important mechanism constraining TP in one of the world’s largest groups of vertebrates. Jaw length and body mass were weakly correlated, and therefore body size was not a strong predictor of TP. The diversification of large‐bodied herbivores‐detritivores and omnivores in freshwater ecosystems, coupled with small predators in species‐rich orders (e.g., Cypriniformes, Characiformes) in temperate and tropical rivers explains why TP globally shows a weak relationship with body size. Our model validation results underscore the importance of not assuming that explanatory power extends to predictive capacity in macroecology and machine‐learning models.

Full Text
File Pages Size Access
Publisher's official version 15 1 MB Open access
Fig S1 1 104 KB Open access
Fig S2 346 KB Open access
Fig S3 131 KB Open access
Fig S4 253 KB Open access
Fig S5 225 KB Open access
Fig S6 215 KB Open access
Supplementary Material 33 KB Open access
Top of the page

How to cite 

Kopf R. Keller, Yen Jian D. L., Nimmo Dale G., Brosse Sébastien, Villeger Sébastien, Tittensor Derek (2021). Global patterns and predictors of trophic position, body size and jaw size in fishes. Global Ecology And Biogeography, 30(2), 414-428. Publisher's official version : , Open Access version :