Measuring Global Ocean Heat Content to Estimate the Earth Energy Imbalance

Type Article
Date 2019-08
Language English
Author(s) Meyssignac Benoit1, Boyer Tim2, Zhao ZhongxiangORCID3, Hakuba Maria Z.4, 5, Landerer Felix W.4, Stammer Detlef6, Koehl Armin6, Kato Seiji7, L'Ecuyer Tristan8, Ablain Michael9, Abraham John Patrick10, Blazquez AlejandroORCID1, Cazenave Anny1, Church John A.11, Cowley RebeccaORCID12, Cheng Lijing13, Domingues Catia M.ORCID14, 15, 16, Giglio DonataORCID17, Gouretski Viktor18, Ishii Masayoshi19, Johnson Gregory C.20, Killick Rachel E.21, Legler David22, Llovel William1, Lyman John20, 23, Palmer Matthew Dudley21, Piotrowicz Steve22, Purkey Sarah G.24, Roemmich Dean17, Roca Rmy1, Savita AbhishekORCID14, 16, von Schuckmann Karina25, Speich SabrinaORCID26, Stephens Graeme4, Wang Gongjie27, Wijffels Susan Elisabeth28, Zilberman Nathalie17
Affiliation(s) 1 : Univ Toulouse, IRD, UPS, CNRS,CNES,LEGOS, Toulouse, France.
2 : NOAA, Natl Ctr Environm Informat, Silver Spring, MD USA.
3 : Univ Washington, Appl Phys Lab, Seattle, WA 98105 USA.
4 : CALTECH, Jet Prop Lab, Pasadena, CA USA.
5 : Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA.
6 : Univ Hamburg, Ctr Erdsyst Forsch & Nachhaltigkeit, Hamburg, Germany.
7 : NASA, Langley Res Ctr, Hampton, VA 23665 USA.
8 : Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI USA.
9 : Collecte Localisat Satellite, Ramonville St Agne, France.
10 : Univ St Thomas, St Paul, MN USA.
11 : Univ New South Wales, Climate Change Res Ctr, Sydney, NSW, Australia.
12 : Commonwealth Sci & Ind Res Org, Climate Sci Ctr, Hobart, Tas, Australia.
13 : Chinese Acad Sci, Int Ctr Climate & Environm Sci, Inst Atmospher Phys, Beijing, Peoples R China.
14 : Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas, Australia.
15 : Antarctic Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas, Australia.
16 : Australian Res Council, Ctr Excellence Climate Syst Sci, Hobart, Tas, Australia.
17 : Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA.
18 : Univ Hamburg, Ctr Earth Syst Res & Sustainabil, Integrated Climate Data Ctr, CliSAP, Hamburg, Germany.
19 : Japan Meteorol Agcy, Meteorol Res Inst, Tsukuba, Ibaraki, Japan.
20 : NOAA, Pacific Marine Environm Lab, 7600 Sand Point Way Ne, Seattle, WA 98115 USA.
21 : Hadley Ctr, Met Off, Exeter, Devon, England.
22 : NOAA, Climate Program Off, Silver Spring, MD USA.
23 : Univ Hawaii Manoa, Joint Inst Marine & Atmospher Res, Honolulu, HI 96822 USA.
24 : Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA.
25 : Mercator Ocean Int, Ramonville St Agne, France.
26 : Ecole Normale Super, Lab Meteorol Dynam, Paris, France.
27 : Natl Univ Def Technol, Coll Meteorol & Oceanog, Nanjing, Jiangsu, Peoples R China.
28 : Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA.
Source Frontiers In Marine Science (2296-7745) (Frontiers Media Sa), 2019-08 , Vol. 6 , P. 432 (31p.)
DOI 10.3389/fmars.2019.00432
WOS© Times Cited 46
Keyword(s) ocean heat content, sea level, ocean mass, ocean surface fluxes, ARGO, altimetry, GRACE, Earth Energy Imbalance
Abstract

The energy radiated by the Earth toward space does not compensate the incoming radiation from the Sun leading to a small positive energy imbalance at the top of the atmosphere (0.4-1 Wm(-2)). This imbalance is coined Earth's Energy Imbalance (EEI). It is mostly caused by anthropogenic greenhouse gas emissions and is driving the current warming of the planet. Precise monitoring of EEI is critical to assess the current status of climate change and the future evolution of climate. But the monitoring of EEI is challenging as EEI is two orders of magnitude smaller than the radiation fluxes in and out of the Earth system. Over 93% of the excess energy that is gained by the Earth in response to the positive EEI accumulates into the ocean in the form of heat. This accumulation of heat can be tracked with the ocean observing system such that today, the monitoring of Ocean Heat Content (OHC) and its long-term change provide the most efficient approach to estimate EEI. In this community paper we review the current four state-of-the-art methods to estimate global OHC changes and evaluate their relevance to derive EEI estimates on different time scales. These four methods make use of: (1) direct observations of in situ temperature; (2) satellite-based measurements of the ocean surface net heat fluxes; (3) satellite-based estimates of the thermal expansion of the ocean and (4) ocean reanalyses that assimilate observations from both satellite and in situ instruments. For each method we review the potential and the uncertainty of the method to estimate global OHC changes. We also analyze gaps in the current capability of each method and identify ways of progress for the future to fulfill the requirements of EEI monitoring. Achieving the observation of EEI with sufficient accuracy will depend on merging the remote sensing techniques with in situ measurements of key variables as an integral part of the Ocean Observing System.

Full Text
File Pages Size Access
Publisher's official version 31 7 MB Open access
Top of the page

How to cite 

Meyssignac Benoit, Boyer Tim, Zhao Zhongxiang, Hakuba Maria Z., Landerer Felix W., Stammer Detlef, Koehl Armin, Kato Seiji, L'Ecuyer Tristan, Ablain Michael, Abraham John Patrick, Blazquez Alejandro, Cazenave Anny, Church John A., Cowley Rebecca, Cheng Lijing, Domingues Catia M., Giglio Donata, Gouretski Viktor, Ishii Masayoshi, Johnson Gregory C., Killick Rachel E., Legler David, Llovel William, Lyman John, Palmer Matthew Dudley, Piotrowicz Steve, Purkey Sarah G., Roemmich Dean, Roca Rmy, Savita Abhishek, von Schuckmann Karina, Speich Sabrina, Stephens Graeme, Wang Gongjie, Wijffels Susan Elisabeth, Zilberman Nathalie (2019). Measuring Global Ocean Heat Content to Estimate the Earth Energy Imbalance. Frontiers In Marine Science, 6, 432 (31p.). Publisher's official version : https://doi.org/10.3389/fmars.2019.00432 , Open Access version : https://archimer.ifremer.fr/doc/00675/78723/