Small phytoplankton contribute greatly to CO2-fixation after the diatom bloom in the Southern Ocean

Phytoplankton is composed of a broad-sized spectrum of phylogenetically diverse microorganisms. Assessing CO2-fixation intra- and inter-group variability is crucial in understanding how the carbon pump functions, as each group of phytoplankton may be characterized by diverse efficiencies in carbon fixation and export to the deep ocean. We measured the CO2-fixation of different groups of phytoplankton at the single-cell level around the naturally iron-fertilized Kerguelen plateau (Southern Ocean), known for intense diatoms blooms suspected to enhance CO2 sequestration. After the bloom, small cells (<20 µm) composed of phylogenetically distant taxa (prymnesiophytes, prasinophytes, and small diatoms) were growing faster (0.37 ± 0.13 and 0.22 ± 0.09 division d−1 on- and off-plateau, respectively) than larger diatoms (0.11 ± 0.14 and 0.09 ± 0.11 division d−1 on- and off-plateau, respectively), which showed heterogeneous growth and a large proportion of inactive cells (19 ± 13%). As a result, small phytoplankton contributed to a large proportion of the CO2 fixation (41–70%). The analysis of pigment vertical distribution indicated that grazing may be an important pathway of small phytoplankton export. Overall, this study highlights the need to further explore the role of small cells in CO2-fixation and export in the Southern Ocean.

Full Text

FilePagesSizeAccess
Publisher's official version
142 Mo
Supplementary figures and tables
121 Mo
How to cite
Irion Solène, Christaki Urania, Berthelot Hugo, L’helguen Stéphane, Jardillier Ludwig (2021). Small phytoplankton contribute greatly to CO2-fixation after the diatom bloom in the Southern Ocean. Isme Journal. 15 (9). 2509-2522. https://doi.org/10.1038/s41396-021-00915-z, https://archimer.ifremer.fr/doc/00684/79595/

Copy this text