Transient dynamics of a 2D granular pile

Type Article
Date 2015-05
Language English
Author(s) Mutabaruka PatrickORCID1, Kumar Krishna3, Soga Kenichi3, Radjai FarhangORCID1, 4, Delenne Jean-YvesORCID2
Affiliation(s) 1 : Univ Montpellier 2, CNRS, UMR 5508, LMGC, F-34095 Montpellier 5, France.
2 : Univ Montpellier 2, Cirad, IATE, Montpellier Sup Agro,INRA,UMR1208, F-34060 Montpellier 1, France.
3 : Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England.
4 : MIT, MultiScale Mat Sci Energy & Environm, CEE, CNRS,UMI 3466, Cambridge, MA 02139 USA.
Source European Physical Journal E (1292-8941) (Springer), 2015-05 , Vol. 38 , N. 5 , P. 47
DOI 10.1140/epje/i2015-15047-x
WOS© Times Cited 4
Abstract

We investigate by means of Contact Dynamics simulations the transient dynamics of a 2D granular pile set into motion by applying shear velocity during a short time interval to all particles. The spreading dynamics is directly controlled by the input energy whereas in recent studies of column collapse the dynamics scales with the initial potential energy of the column. As in column collapse, we observe a power-law dependence of the runout distance with respect to the input energy with nontrivial exponents. This suggests that the power-law behavior is a generic feature of granular dynamics, and the values of the exponents reflect the distribution of kinetic energy inside the material. We observe two regimes with different values of the exponents: the low-energy regime reflects the destabilization of the pile by the impact with a runout time independent of the input energy whereas the high-energy regime is governed by the input energy. We show that the evolution of the pile in the high-energy regime can be described by a characteristic decay time and the available energy after the pile is destabilized.

Full Text
File Pages Size Access
Author's final draft 7 844 KB Open access
Top of the page