Epigenomic modifications induced by hatchery rearing persist in germ line cells of adult salmon after their oceanic migration

Type Article
Acceptance Date 2021 IN PRESS
Language English
Author(s) Leitwein MaevaORCID1, Laporte MartinORCID1, Le Luyer JeremyORCID2, Mohns Kayla3, Normandeau Eric1, Withler Ruth3, Bernatchez Louis1
Affiliation(s) 1 : Institut de Biologie Intégrative et des Systèmes (IBIS) Université Laval Québec Québec ,Canada G1V 0A6
2 : Ifremer, IRD, Institut Louis‐Malardé, Univ Polynésie française, EIO F‐98719 Taravao, Tahiti ,Polynésie française France
3 : Department of Fisheries and Oceans Canada Pacific Biological Station Nanaimo British Columbia, Canada
Source Evolutionary Applications (1752-4571) (Wiley) In Press
DOI 10.1111/eva.13235
Keyword(s) conservation, developmental plasticity, epigenomic, fisheries, fitness, hatchery, salmonid
Abstract

Human activities induce direct or indirect selection pressure on natural population and may ultimately affect population’s integrity. While numerous conservation programs aimed to minimize human‐induced genomic variation, human‐induced environmental variation may generate epigenomic variation potentially affecting fitness through phenotypic modifications. Major questions remain pertaining to how much epigenomic variation arises from environmental heterogeneity, whether this variation can persist throughout life, and whether it can be transmitted across generations. We performed whole genome bisulfite sequencing (WGBS) on the sperm of genetically indistinguishable hatchery and wild born migrating adults of Coho salmon (Oncorhynchus kisutch) from two geographically distant rivers at different epigenome scales. Our results showed that coupling WGBS with fine scale analyses (local and chromosomal) allows the detection of parallel early‐life hatchery‐induced epimarks that differentiate wild from hatchery‐reared salmon. Four chromosomes and 183 differentially methylated regions (DMRs) displayed a significant signal of methylation differentiation between hatchery and wild born Coho salmon. Moreover, those early‐life epimarks persisted in germ‐line cells despite about 1.5 year spent in the ocean following release from hatchery, opening the possibility for transgenerational inheritance. Our results strengthen the hypothesis that epigenomic modifications environmentally‐induced during early‐life development persist in germ cells of adults until reproduction, which could potentially impact their fitness.

Full Text
File Pages Size Access
Author's final draft IN PRESS 34 1 MB Open access
Fig S1 1 55 KB Open access
Fig S2 1 5 KB Open access
Fig S3 1 9 KB Open access
Table S1‐S3 64 KB Open access
Table S4 62 KB Open access
Supplementary Material 183 927 KB Open access
Supplementary Material 2 183 2 MB Open access
Top of the page

How to cite 

Leitwein Maeva, Laporte Martin, Le Luyer Jeremy, Mohns Kayla, Normandeau Eric, Withler Ruth, Bernatchez Louis Epigenomic modifications induced by hatchery rearing persist in germ line cells of adult salmon after their oceanic migration. Evolutionary Applications IN PRESS. Publisher's official version : https://doi.org/10.1111/eva.13235 , Open Access version : https://archimer.ifremer.fr/doc/00688/79977/