Copy this text
Mediterranean nascent sea spray organic aerosol and relationships with seawater biogeochemistry
The organic mass fraction from sea spray aerosol (SSA) is currently a subject of intense research. The majority of this research is dedicated to measurements in ambient air, although recently a small number of studies have additionally focused on nascent sea spray aerosol. This work presents measurements collected during a five-week cruise in May and June 2017 in the central and western Mediterranean Sea, an oligotrophic marine region with low phytoplankton biomass. Surface seawater was continuously pumped into a bubble bursting apparatus to generate nascent sea spray aerosol. Size distributions were measured with a differential mobility particle sizer (DMPS). Chemical characterization of the submicron aerosol was performed with a time of flight aerosol chemical speciation monitor (ToF-ACSM) operating with a 15-minute time resolution, and with filter-based chemical analysis on a daily basis. Using a positive matrix factorization analysis, the ToF-ACSM non-refractory organic matter (OMNR) was separated into four different organic aerosols types which were identified as primary OA (POANR), oxidized OA (OOANR), a methanesulfonic acid type OA (MSA-OANR) and a mixed OA (MOANR). In parallel, surface seawater biogeochemical properties were monitored providing information on phytoplankton cell abundance and seawater particulate organic carbon (one-hour time resolution), and seawater surface microlayer (SML) dissolved organic carbon (DOC) (on a daily basis). Statistically robust correlations (for n > 500) were found between MOANR and nano phytoplankton cell abundance, as well as between POANR, OOANR, and particulate organic carbon (POC). Filter-based analysis of the submicron SSA showed that the non-refractory organic mass represented only 13 ± 3 % of the total organic mass, which represents 22 ± 6 % of the total sea spray mass. Parameterizations of the contributions of different types of organics to the submicron nascent sea spray aerosol are proposed as a function of the seawater biogeochemical properties for use in models.