Copy this text
Restoration of Seagrass Meadows in the Mediterranean Sea: A Critical Review of Effectiveness and Ethical Issues
Some species of seagrasses (e.g., Zostera marina and Posidonia oceanica) have declined in the Mediterranean, at least locally. Others are progressing, helped by sea warming, such as Cymodocea nodosa and the non-native Halophila stipulacea. The decline of one seagrass can favor another seagrass. All in all, the decline of seagrasses could be less extensive and less general than claimed by some authors. Natural recolonization (cuttings and seedlings) has been more rapid and more widespread than was thought in the 20th century; however, it is sometimes insufficient, which justifies transplanting operations. Many techniques have been proposed to restore Mediterranean seagrass meadows. However, setting aside the short-term failure or half-success of experimental operations, long-term monitoring has usually been lacking, suggesting that possible failures were considered not worthy of a scientific paper. Many transplanting operations (e.g., P. oceanica) have been carried out at sites where the species had never previously been present. Replacing the natural ecosystem (e.g., sandy bottoms, sublittoral reefs) with P. oceanica is obviously inappropriate in most cases. This presupposes ignorance of the fact that the diversity of ecosystems is one of the bases of the biodiversity concept. In order to prevent the possibility of seagrass transplanting from being misused as a pretext for further destruction, a guide for the proper conduct of transplanting is proposed.
Keyword(s)
Cymodocea nodosa, ecosystem diversity, Mediterranean, natural recolonization, Posidonia oceanica, seagrass decline, seagrass restoration, transplanting, Zostera marina
Full Text
File | Pages | Size | Access | |
---|---|---|---|---|
Publisher's official version | 34 | 6 Mo |