The dimensionality and structure of species trait spaces
Type | Article | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | 2021-09 | ||||||||||||||||
Language | English | ||||||||||||||||
Author(s) | Mouillot David1, 2, Loiseau Nicolas1, Grenié Matthias3, Algar Adam C.4, Allegra Michele5, Cadotte Marc W.6, Casajus Nicolas7, Denelle Pierre8, Guéguen Maya9, Maire Anthony10, Maitner Brian11, McGill Brian J.12, McLean Matthew13, Mouquet Nicolas1, 7, Munoz François14, Thuiller Wilfried9, Villeger Sébastien1, Violle Cyrille3, Auber Arnaud![]() |
||||||||||||||||
Affiliation(s) | 1 : MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France 2 : Institut Universitaire de France, IUF, Paris, France 3 : Centre d'Ecologie Fonctionnelle et Evolutive—UMR 5175 CEFE, University of Montpellier, CNRS, EPHE, University of Paul Valéry, IRD, Montpellier, France 4 : Department of Biology, Lakehead University, Thunder Bay, ON, Canada 5 : Institut de Neurosciences de la Timone, Aix Marseille Université, UMR 7289, CNRS, Marseille, France 6 : Department of Biological Sciences, University of Toronto-Scarborough, Toronto, ON, Canada 7 : FRB—CESAB, Institut Bouisson Bertrand, Montpellier, France 8 : Biodiversity, Macroecology & Biogeography, University of Goettingen, Göttingen, Germany 9 : Laboratoire d'Ecologie Alpine, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, Fr 10 : EDF R&D, LNHE (Laboratoire National d'Hydraulique et Environnement), Chatou, France 11 : Department of Ecology and Evolutionary Biology, University of Connecticut, Mansfield, CT, USA 12 : School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USA 13 : Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada 14 : LiPhy (Laboratoire Interdisciplinaire de Physique), Université Grenoble Alpes, Grenoble, France 15 : IFREMER, Unité Halieutique Manche Mer du Nord, Laboratoire Ressources Halieutiques, Boulogne-sur- Mer, France |
||||||||||||||||
Source | Ecology Letters (1461-023X) (Wiley / Blackwell), 2021-09 , Vol. 24 , N. 9 , P. 1988-2009 | ||||||||||||||||
DOI | 10.1111/ele.13778 | ||||||||||||||||
WOS© Times Cited | 27 | ||||||||||||||||
Keyword(s) | complexity, functional ecology, hypervolume, species clustering, species uniqueness | ||||||||||||||||
Abstract | Trait- based ecology aims to understand the processes that generate the overarching diversity of organismal traits and their influence on ecosystem functioning. Achieving this goal requires simplifying this complexity in synthetic axes defining a trait space and to cluster species based on their traits while identifying those with unique combinations of traits. However, so far, we know little about the dimensionality, the robustness to trait omission and the structure of these trait spaces. Here, we propose a unified framework and a synthesis across 30 trait datasets representing a broad variety of taxa, ecosystems and spatial scales to show that a common trade- off between trait space quality and operationality appears between three and six dimensions. The robustness to trait omission is generally low but highly variable among datasets. We also highlight invariant scaling relationships, whatever organismal complexity, between the number of clusters, the number of species in the dominant cluster and the number of unique species with total species richness. When species richness increases, the number of unique species saturates, whereas species tend to disproportionately pack in the richest cluster. Based on these results, we propose some rules of thumb to build species trait spaces and estimate subsequent functional diversity indices. |
||||||||||||||||
Full Text |
|