Constraints on the source of reactive phases in sediment from a major Arctic river using neodymium isotopes

Type Article
Date 2021-07
Language English
Author(s) Larkin Christina S.1, Piotrowski Alexander M.1, Hindshaw Ruth S.1, Bayon Germain2, Hilton Robert G.3, Baronas J. Jotautas1, Dellinger Mathieu3, Wang Ruixue1, Tipper Edward T.1
Affiliation(s) 1 : Univ Cambridge, Dept Earth Sci, Cambridge, England.
2 : IFREMER, Marine Geosci Unit, Brest, France.
3 : Univ Durham, Dept Geog, Durham, England.
Source Earth And Planetary Science Letters (0012-821X) (Elsevier), 2021-07 , Vol. 565 , P. 116933 (11p.)
DOI 10.1016/j.epsl.2021.116933
WOS© Times Cited 3
Keyword(s) iron oxides, bioavailable, neodymium isotopes, Arctic
Abstract

Riverine suspended particulate matter (SPM) is essential for the delivery of micronutrients such as iron (Fe) to the oceans. SPM is known to consist of multiple phases with differing reactivity, but their role in the delivery of elements to the oceans is poorly constrained. Here we provide new constraints on the source and composition of reactive phases in SPM from the Mackenzie River, the largest sediment source to the Arctic Ocean. Sequential leaching of SPM shows that river sediments contain labile Fe phases. We estimate the labile Fe flux is substantial (0.21(+0.06,-0.05) Tg/yr) by quantifying Fe concentrations in weak leaches of the SPM. The labile Fe phase hosts a considerable amount of rare earth elements (REE), including neodymium (Nd). We demonstrate that the labile Fe phase and dissolved load have radiogenic Nd isotope ratios that are identical within uncertainty, but up to 8 epsilon units distinct from the silicate phase. We interpret this as evidence for dynamic cycling between Fe-oxide phases in SPM and the river water, demonstrating the high reactivity of the labile Fe phase. Nd isotope and elemental molar ratios suggest that a significant amount of labile Fe- and Nd-bearing phases are derived from Fe-oxides within the sedimentary source rock rather than silicate mineral dissolution. Thus, sedimentary rock erosion and weathering provides an important source of labile Fe, manganese (Mn) and by extension potentially other trace metals. Our results imply that both past and future environmental change in the Arctic, such as permafrost thaw, may trigger changes to the supply of reactive trace metals. These results demonstrate that a re-evaluation of sediment reactivity within rivers is required where uplifted sedimentary rocks are present.

Full Text
File Pages Size Access
11 4 MB Access on demand
241 KB Access on demand
79 KB Access on demand
Author's final draft 49 9 MB Open access
Top of the page

How to cite 

Larkin Christina S., Piotrowski Alexander M., Hindshaw Ruth S., Bayon Germain, Hilton Robert G., Baronas J. Jotautas, Dellinger Mathieu, Wang Ruixue, Tipper Edward T. (2021). Constraints on the source of reactive phases in sediment from a major Arctic river using neodymium isotopes. Earth And Planetary Science Letters, 565, 116933 (11p.). Publisher's official version : https://doi.org/10.1016/j.epsl.2021.116933 , Open Access version : https://archimer.ifremer.fr/doc/00697/80901/