Mn-micronodules from the sediments of the Clarion-Clipperton zone (Pacific Ocean): Origin, elemental source, and Fe-Cu-Zn-isotope composition
Type | Article | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | 2021-10 | ||||||||||||||||||||||||||||
Language | English | ||||||||||||||||||||||||||||
Author(s) | Dekov Vesselin M.1, 2, Rouxel Olivier![]() ![]() ![]() |
||||||||||||||||||||||||||||
Affiliation(s) | 1 : Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan 2 : Unité de Géosciences Marines, IFREMER, Z.I. Pointe du diable, BP 70 - 29280 Plouzané, France 3 : CNRS, Univ Brest, UMR 6538 Laboratoire Géosciences Océan, F-29280 Plouzané, France 4 : CNRS, Univ Brest, UMS 3113, F-29280 Plouzané, France 5 : Federal Institute for Geoscience and Natural Resources (BGR), Stilleweg 2, D-30655 Hannover, Germany 6 : REM-EEP-LEP, IFREMER, 29280 Plouzané, France |
||||||||||||||||||||||||||||
Source | Chemical Geology (0009-2541) (Elsevier BV), 2021-10 , Vol. 580 , P. 120388 (34p.) | ||||||||||||||||||||||||||||
DOI | 10.1016/j.chemgeo.2021.120388 | ||||||||||||||||||||||||||||
WOS© Times Cited | 3 | ||||||||||||||||||||||||||||
Keyword(s) | Fe-Cu-Zn-isotopes, Geochemistry, Mn-micronodules, Mn-nodules, Pore waters, Suboxic diagenesis | ||||||||||||||||||||||||||||
Abstract | Mn- micronodules and nodules of the Clarion-Clipperton zone (Pacific Ocean) are composed of 10 Å and 7 Å phyllomanganates, and δ-MnO2. The Mn-micronodules are built of fine concentric growth layers of three types (1, 2a, and 2b) according to their Mn/Fe ratio and Ni, Cu, and Co content. Applying previously developped geochemical discrimination approaches we found that the Mn-micronodules were diagenetic precipitates that were a result of suboxic diagenesis, whereas the paired Mn-nodules were diagenetic‑hydrogenetic formations. The most common growth layers (type 2) within the Mn-micronodules are suboxic-diagenetic, whereas the rare growth layers (type 1) are mixed diagenetic‑hydrogenetic and hydrogenetic precipitates. The suboxic diagenetic formation of the Mn-micronodules seems to be a result of the fluctuation of the oxic-suboxic front in the sediment since the Last Glacial Period (LGP). The migration of the oxic-suboxic front close to the seawater/sediment boundary during the LGP has likely resulted in suboxic reduction of Mn4+ and other elements in the sediment and their upward diffusion. Post-LGP deepening of the oxic-suboxic front has seemingly led to re-oxidation of Mn2+ in the pore waters and Mn-micronodule precipitation. The suboxic quantitative re-mobilization of seawater-derived Cesolid phase in the sediment (positive Ce anomaly) and its subsequent sequestration by Mn-micronodules resulted in positive Ce anomaly of the Mn-micronodules and Ce-deficient pore water. This Ce deficiency was recorded in the diagenetic Mn-nodules (negative or no Ce anomaly). The sediment pore waters were source of most elements in the Mn-micronodules and to the bottom seawater. The diagenetic processes were the major control on the Fe-Cu-Zn isotope composition of the Mn- micronodules and nodules. Measured Fe-isotope composition of the Mn-micronodules can equally be explained by hydrogenetic and diagenetic precipitation. Considering our mineralogical and geochemical data we would suggest a rather diagenetic than hydrogenetic control on the Fe-isotope composition of the Mn-micronodules: suboxic diagenetic reduction of the sedimentary Fe in the sediment, fractionation of Fe-isotopes that produces an isotopically light dissolved Fe pool, which leads to light Fe isotope composition of both the Mn- micronodules and nodules (−0.63 to −0.27‰). The preferential scavenging of 63Cu from seawater on the hydrogenetic Mn-Fe-oxyhydroxides accounts for the Cu-isotope composition of the hydrogenetic-diagenetic Mn-nodules (+0.21 − +0.35‰), which is lighter than that of seawater. The identical Cu-isotope composition of the diagenetic Mn-micronodules is a result of oxidative dissolution of the sedimentary Cu-containing minerals, release of isotopically heavy Cuaq2+ in the pore waters and record of this diagenetic Cu-isotope pool in the Mn-micronodules. The hydrogenetic-diagenetic Mn-nodules have Zn-isotope composition (+0.75 − +0.87‰) heavier than that of the seawater which is interpreted to be a result of equilibrium isotope partitioning between dissolved and adsorbed Zn: preferential sorption of 66Zn on Fe-Mn-oxyhydroxides surfaces. Preferential adsorption of 66Zn from the light Zn isotope pool of the pore waters on the Mn-Fe-oxyhydroxides has resulted in heavy Zn-isotope composition of the Mn-micronodules and diagenetic layers of the Mn-nodules. The lack of robust assessment of the Mn-micronodule abundance in sediment volume unit and the insufficient geochemical data for the Mn-micronodules prevents a meaningful estimation of their resource potential. |
||||||||||||||||||||||||||||
Full Text |
|