Oceanic Mesoscale Eddy Depletion Catalyzed by Internal Waves
Type | Article | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Date | 2021-09 | ||||||||||||
Language | English | ||||||||||||
Author(s) | Barkan Roy![]() ![]() |
||||||||||||
Affiliation(s) | 1 : Tel Aviv Univ, Porter Sch Environm & Earth Sci, Tel Aviv, Israel. 2 : Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. 3 : Univ Bretagne Occidentale, Lab Oceanog Phys & Spatiale, Plouzane, France. 4 : Inst Univ France IUF, Paris, France. 5 : Univ Bretagne Occidentale, Lab Oceanog Phys & Spatiale, Plouzane, France. |
||||||||||||
Source | Geophysical Research Letters (0094-8276) (Amer Geophysical Union), 2021-09 , Vol. 48 , N. 18 , P. e2021GL094376 (11p.) | ||||||||||||
DOI | 10.1029/2021GL094376 | ||||||||||||
WOS© Times Cited | 12 | ||||||||||||
Keyword(s) | oceanic energy transfers, mesoscale eddies, submesoscale fronts, internal waves | ||||||||||||
Abstract | The processes leading to the depletion of oceanic mesoscale kinetic energy (KE) and the energization of near-inertial internal waves are investigated using a suite of realistically forced regional ocean simulations. By carefully modifying the forcing fields we show that solutions where internal waves are forced have similar to 25% less mesoscale KE compared with solutions where they are not. We apply a coarse-graining method to quantify the KE fluxes across time scales and demonstrate that the decrease in mesoscale KE is associated with an internal wave-induced reduction of the inverse energy cascade and an enhancement of the forward energy cascade from sub-to super-inertial frequencies. The integrated KE forward transfer rate in the upper ocean is equivalent to half and a quarter of the regionally averaged near-inertial wind work in winter and summer, respectively, with the strongest fluxes localized at surface submesoscale fronts and filaments. |
||||||||||||
Full Text |
|