End-to-End Physics-Informed Representation Learning from and for Satellite Ocean Remote Sensing Data : Applications to Satellite Altimetry and sea Surface Currents

This paper addresses physics-informed deep learning schemes for satellite ocean remote sensing data. Such observation datasets are characterized by the irregular space-time sampling of the ocean surface due to sensors’ characteristics and satellite orbits. With a focus on satellite altimetry, we show that end-to-end learning schemes based on variational formulations provide new means to explore and exploit such observation datasets. Through Observing System Simulation Experiments (OSSE) using numerical ocean simulations and real nadir and wide-swath altimeter sampling patterns, we demonstrate their relevance w.r.t. state-of-the-art and operational methods for space-time interpolation and short-term forecasting issues. We also stress and discuss how they could contribute to the design and calibration of ocean observing systems.

Keyword(s)

Space oceanography, sea surface dynamics, satellite altimetry, SWOT mission, end-to-end learning, inverse problems, data assimilation, space-time interpolation, short-term forecasting, adaptive sampling.

Full Text

FilePagesSizeAccess
Publisher's official version
81 Mo
How to cite
Fablet Ronan, Amar Mohamed Mahmoud, Febvre Quentin, Beauchamp Maxime, Chapron Bertrand (2021). End-to-End Physics-Informed Representation Learning from and for Satellite Ocean Remote Sensing Data : Applications to Satellite Altimetry and sea Surface Currents. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. V-3-2021. 295-302. https://doi.org/10.5194/isprs-annals-V-3-2021-295-2021, https://archimer.ifremer.fr/doc/00806/91770/

Copy this text