Bridging Koopman Operator and Time-Series Auto-Correlation Based Hilbert–Schmidt Operator

Given a stationary continuous-time process f(t), the Hilbert–Schmidt operator Aτ can be defined for every finite τ. Let λτ,i be the eigenvalues of Aτ with descending order. In this article, a Hilbert space $$\mathcal {H}_f$$ ℋ f and the (time-shift) continuous one-parameter semigroup of isometries $$\mathcal {K}^s$$ K s are defined. Let $$\{v_i, i\in \mathbb {N}\}$$ { v i , i ∈ ℕ } be the eigenvectors of $$\mathcal {K}^s$$ K s for all s ≥ 0. Let $$f = \displaystyle \sum _{i=1}^{\infty }a_iv_i + f^{\perp }$$ f = ∑ i = 1 ∞ a i v i + f ⊥ be the orthogonal decomposition with descending |ai|. We prove that limτ→∞λτ,i = |ai|2. The continuous one-parameter semigroup $$\{\mathcal {K}^s: s\geq 0\}$$ { K s : s ≥ 0 } is equivalent, almost surely, to the classical Koopman one-parameter semigroup defined on L2(X, ν), if the dynamical system is ergodic and has invariant measure ν on the phase space X.

Keyword(s)

Singular spectrum analysis, Koopman theory, Hilbert–Schmidt theory

Full Text

FilePagesSizeAccess
Publisher's official version
16317 Ko
How to cite
Zhen Yicun, Chapron Bertrand, Mémin Etienne (2023). Bridging Koopman Operator and Time-Series Auto-Correlation Based Hilbert–Schmidt Operator. In Chapron Bertrand, Crisan Dan, Holm Darryl, Mémin Etienne, Radomska Anna (Eds.) (2023). Stochastic Transport in Upper Ocean Dynamics. STUOD 2021 Workshop, London, UK, September 20-23. Springer International Publishing. ISBN 978-3-031-18987-6. Part of the Mathematics of Planet Earth book series (MPE,volume 10), pp.301-316. Springer International Publishing. https://doi.org/10.1007/978-3-031-18988-3_19, https://archimer.ifremer.fr/doc/00821/93264/

Copy this text