Observations of the chemistry and concentrations of reactive Hg at locations with different ambient air chemistry

Type Article
Date 2023-12
Language English
Author(s) Gustin Mae Sexauer1, Dunham-Cheatham Sarrah M.2, Allen Natalie1, Choma Nicole1, Johnson William3, Lopez Sam3, Russell Armistead4, Mei Eric4, Magand Olivier5, 6, Dommergue Aurélien5, Elgiar Tyler7
Affiliation(s) 1 : Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV, USA
2 : College of Agriculture, Biotechnology & Natural Resources, University Nevada, Reno, NV, USA
3 : Department of Geology & Geophysics, University of Utah, Salt Lake City, UT, USA
4 : School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
5 : Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP1, IGE, 38000 Grenoble, France
6 : Observatoire des Sciences de l'Univers à La Réunion (OSU-R), UAR 3365, CNRS, Université de La Réunion, Météo France, 97744 Saint-Denis, La Réunion, France
7 : Bingham Research Center, Utah State University, Vernal, UT, USA
Source Science Of The Total Environment (0048-9697) (Elsevier BV), 2023-12 , Vol. 904 , P. 166184 (13p.)
DOI 10.1016/j.scitotenv.2023.166184
WOS© Times Cited 2
Keyword(s) Gaseous oxidized mercury, GEOS-Chem, HYSPLIT, Mercury, Particulate-bound mercury
Abstract

The Hg research community needs methods to more accurately measure atmospheric Hg concentrations and chemistry. The Reactive Mercury Active System (RMAS) uses cation exchange, nylon, and PTFE membranes to determine reactive mercury (RM), gaseous oxidized mercury, and particulate-bound mercury (PBM) concentrations and chemistry, respectively. New data for Atlanta, Georgia (NRGT) demonstrated that particulate-bound Hg was dominant and the chemistry was primarily N and S HgII compounds. At Great Salt Lake, Utah (GSL), RM was predominately PBM, with NS > organics > halogen > O HgII compounds. At Guadalupe Mountains National Park, Texas (GUMO), halogenated compound concentrations were lowest when air interacting with the site was primarily derived from the Midwest, and highest when the air was sourced from Mexico. At Amsterdam Island, Southern Indian Ocean, compounds were primarily halogenated with some N, S, and organic HgII compounds potentially associated with biological activity. The GEOS-Chem model was applied to see if it predicted measurements at five field sites. Model values were higher than observations at GSL, slightly lower at NRGT, and observations were an order of magnitude higher than modeled values for GUMO and Reno, Nevada. In general, data collected from 13 locations indicated that N, S, and organic RM compounds were associated with city and forest locations, halogenated compounds were sourced from the marine boundary layer, and O compounds were associated with long-range transport. Data being developed currently, and in the past, suggest there are multiple forms of RM that modelers must consider, and PBM is an important component of RM.

Full Text
File Pages Size Access
13 4 MB Access on demand
629 KB Access on demand
Author's final draft 36 1 MB Open access
Top of the page

How to cite 

Gustin Mae Sexauer, Dunham-Cheatham Sarrah M., Allen Natalie, Choma Nicole, Johnson William, Lopez Sam, Russell Armistead, Mei Eric, Magand Olivier, Dommergue Aurélien, Elgiar Tyler (2023). Observations of the chemistry and concentrations of reactive Hg at locations with different ambient air chemistry. Science Of The Total Environment, 904, 166184 (13p.). Publisher's official version : https://doi.org/10.1016/j.scitotenv.2023.166184 , Open Access version : https://archimer.ifremer.fr/doc/00849/96096/