Influence of Clay-Containing Sediments on Methane Hydrate Formation: Impacts on Kinetic Behavior and Gas Storage Capacity

Type Article
Date 2023-09
Language English
Author(s) Agnissan Constant Art-Clarie1, 2, Guimpier Charlène1, 2, Terzariol MarcoORCID1, Fandino OliviaORCID1, Chéron Sandrine1, Riboulot VincentORCID1, Desmedt Arnaud2, Ruffine LivioORCID1
Affiliation(s) 1 : Univ Brest ,CNRS Ifremer UMR Geo‐Ocean F‐29280 Plouzané ,France
2 : Groupe Spectroscopie Moléculaire, CNRS Univ. de Bordeaux ISM UMR 5255 Talence ,France
Source Journal Of Geophysical Research-solid Earth (2169-9313) (American Geophysical Union (AGU)), 2023-09 , Vol. 128 , N. 9 , P. e2023JB027333 (22p.)
DOI 10.1029/2023JB027333
Abstract

On Earth, natural hydrates are mostly encountered in clay‐rich sediments. Yet their formation processes in such matrices remain poorly understood. Achieving an in‐depth understanding of how methane hydrates accumulate on continental margins is key to accurately assess (1) their role in sustaining the development of some chemosynthetic communities at cold seeps, (2) their potential in terms of energy resources and geohazards, and (3) the fate of the methane releases, a powerful greenhouse gas, in this changing climate. This study investigated the formation of methane hydrates and their gas storage capacity in clay‐rich sediments. A set of hydrate experiments were performed in matrices composed of sand, illite‐rich clay and montmorillonite‐rich clay at different proportions aiming to determine the role of mineralogy on hydrate formation processes. The experiments demonstrate that a clay content of 10% in a partially water saturated sand/clay mixture increases the induction time by ∼60%, irrespective of the nature of the clay used. The increase in water saturation in the two matrices promotes hydrate formation. Micro‐Raman spectroscopic analyses reveal that increasing the clay content leads to a decrease in the hydrate small‐cage occupancy, with an impact on the storage capacity. Finally, the analyses of collected natural samples from the Black Sea (off Romania) enable us to estimate the gas storage capacity of the deposit. Our estimates is different from previous ones, and supports the importance of coupling multiscale properties, from the microscale to the geological scale, to accurately assess the total amount of methane hosts in hydrate deposits worldwide.

Full Text
File Pages Size Access
Publisher's official version 46 1 MB Open access
Supporting Information S1 4 168 KB Open access
Top of the page

How to cite 

Agnissan Constant Art-Clarie, Guimpier Charlène, Terzariol Marco, Fandino Olivia, Chéron Sandrine, Riboulot Vincent, Desmedt Arnaud, Ruffine Livio (2023). Influence of Clay-Containing Sediments on Methane Hydrate Formation: Impacts on Kinetic Behavior and Gas Storage Capacity. Journal Of Geophysical Research-solid Earth, 128(9), e2023JB027333 (22p.). Publisher's official version : https://doi.org/10.1029/2023JB027333 , Open Access version : https://archimer.ifremer.fr/doc/00849/96135/