Observing the full ocean volume using Deep Argo floats

Type Article
Date 2023-11
Language English
Author(s) Zilberman Nathalie V.1, Thierry VirginieORCID2, King Brian3, Alford Matthew1, André XavierORCID4, Balem KevinORCID2, Briggs Nathan3, Chen Zhaohui5, Cabanes CecileORCID19, Coppola Laurent6, 7, Dall’olmo Giorgio8, Desbruyères DamienORCID2, Fernandez Denise9, Foppert Annie10, Gardner Wilford11, Gasparin Florent12, Hally Bryan13, Hosoda Shigeki14, Johnson Gregory C.15, Kobayashi Taiyo14, Le Boyer Arnaud1, Llovel William19, Oke Peter16, Purkey Sarah1, Remy Elisabeth17, Roemmich Dean1, Scanderbeg Megan1, Sutton Philip9, Walicka Kamila18, Wallace Luke13, Van Wijk Esmee M.10, 16
Affiliation(s) 1 : Integrative Oceanography Division and Climate, Atmospheric Science, and Physical Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, CA, United States
2 : Univ Brest, CNRS, Ifremer, IRD, Laboratoire d’Océanographie Physique et Spatiale (LOPS), IUEM, F29280, Plouzané, France
3 : National Oceanography Centre, Southampton, United Kingdom
4 : Ifremer, RDT, F29280, Plouzané, France
5 : Key Laboratory of Physical Oceanography/Institute for Advanced Ocean Science/Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
6 : Laboratoire d’Océanographie de Villefranche, UMR 7093, CNRS, Sorbonne Université, Villefranche-sur-Mer, France
7 : CNRS, OSU STAMAR, UAR 2017, Sorbonne Université, Paris, France
8 : Sezione di Oceanografia, National Institute of Oceanography and Applied Geophysics, OGS, Trieste, Italy
9 : National Institute of Water and Atmospheric Research, Wellington, New Zealand
10 : Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
11 : Department of Oceanography, Texas A&M University, College Station, TX, United States
12 : Université de Toulouse, LEGOS (IRD/UPS/CNES/CNRS), Toulouse, France
13 : University of Tasmania, Hobart, TAS, Australia
14 : Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
15 : Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, WA, United States
16 : Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Hobart, TAS, Australia
17 : Operational Oceanography Department, Mercator Ocean International, Toulouse, France
18 : National Oceanography Centre, British Oceanographic Data Centre, Liverpool, United Kingdom
19 : Univ Brest, CNRS, Ifremer, IRD, Laboratoire d’Océanographie Physique et Spatiale (LOPS), IUEM, F29280, Plouzané, France
Source Frontiers In Marine Science (2296-7745) (Frontiers Media SA), 2023-11 , Vol. 10 , P. 1287867 (12p.)
DOI 10.3389/fmars.2023.1287867
WOS© Times Cited 1
Keyword(s) deep ocean, ocean observation, ocean heat content (OHC), sea level (SL), ocean deoxygenation, bathymetry accuracy, ocean mixing, sediment transport
Abstract

The ocean is the main heat reservoir in Earth’s climate system, absorbing most of the top-of-the-atmosphere excess radiation. As the climate warms, anomalously warm and fresh ocean waters in the densest layers formed near Antarctica spread northward through the abyssal ocean, while successions of warming and cooling events are seen in the deep-ocean layers formed near Greenland. The abyssal warming and freshening expands the ocean volume and raises sea level. While temperature and salinity characteristics and large-scale circulation of upper 2000 m ocean waters are well monitored, the present ocean observing network is limited by sparse sampling of the deep ocean below 2000 m. Recently developed autonomous robotic platforms, Deep Argo floats, collect profiles from the surface to the seafloor. These instruments supplement satellite, Core Argo float, and ship-based observations to measure heat and freshwater content in the full ocean volume and close the sea level budget. Here, the value of Deep Argo and planned strategy to implement the global array are described. Additional objectives of Deep Argo may include dissolved oxygen measurements, and testing of ocean mixing and optical scattering sensors. The development of an emerging ocean bathymetry dataset using Deep Argo measurements is also described.

Full Text
File Pages Size Access
Publisher's official version 12 2 MB Open access
Top of the page

How to cite 

Zilberman Nathalie V., Thierry Virginie, King Brian, Alford Matthew, André Xavier, Balem Kevin, Briggs Nathan, Chen Zhaohui, Cabanes Cecile, Coppola Laurent, Dall’olmo Giorgio, Desbruyères Damien, Fernandez Denise, Foppert Annie, Gardner Wilford, Gasparin Florent, Hally Bryan, Hosoda Shigeki, Johnson Gregory C., Kobayashi Taiyo, Le Boyer Arnaud, Llovel William, Oke Peter, Purkey Sarah, Remy Elisabeth, Roemmich Dean, Scanderbeg Megan, Sutton Philip, Walicka Kamila, Wallace Luke, Van Wijk Esmee M. (2023). Observing the full ocean volume using Deep Argo floats. Frontiers In Marine Science, 10, 1287867 (12p.). Publisher's official version : https://doi.org/10.3389/fmars.2023.1287867 , Open Access version : https://archimer.ifremer.fr/doc/00864/97578/