High-Resolution Gravity Measurements on Board an Autonomous Underwater Vehicle: Data Reduction and Accuracy Assessment

Type Article
Date 2024-02
Language English
Author(s) Vu Dinh ToanORCID1, 2, 3, Verdun JérômeORCID2, Cali JoséORCID2, Maia Marcia1, Poitou Charles1, Ammann Jerome1, Roussel Clement2, D’eu Jean-FrançoisORCID4, Bouhier Marie-Edith5
Affiliation(s) 1 : Geo-Ocean, UMR 6538 CNRS-IFREMER-UBO-UBS, IUEM, University of Brest, 29280 Plouzané, France
2 : Laboratoire Géomatique et Foncier (GeF) UR 4630, Conservatoire National des Arts et Métiers (Cnam), HESAM Université, École Supérieure d’Ingénieurs Géomètres Topographes (ESGT), 1 Boulevard Pythagore, 72000 Le Mans, France
3 : Geodesy and Environment Research Group (GaE), Department of Geodesy, Hanoi University of Mining and Geology, Hanoi 10000, Vietnam
4 : Mappem Geophysics, Bâtiment Tech-Iroise, 1 rue des Ateliers, Zone de Mespaol, 29290 Saint-Renan, France
5 : Service Positionnement, Robotique, Acoustique et Optique (PDG-DFO-SM-PRAO), IFREMER Centre Méditerranée, Zone Portuaire de Brégaillon, CEDEX CS20 330, 83507 La Seyne-sur-Mer, France
Source Remote Sensing (2072-4292) (MDPI AG), 2024-02 , Vol. 16 , N. 3 , P. 461 (23p.)
DOI 10.3390/rs16030461
WOS© Times Cited 1
Note This article belongs to the Special Issue Advances in Positioning, Navigation and 3D Mapping of Underwater Environments)
Keyword(s) underwater gravimeter, underwater gravimetry, downward continuation, temperature correction, temperature stabilisation, Kalman filter, submarine structures
Abstract

Gravity on Earth is of great interest in geodesy, geophysics, and natural resource exploration. Ship-based gravimeters are a widely used instrument for the collection of surface gravity field data in marine regions. However, due to the considerable distance from the sea surface to the seafloor, the spatial resolution of surface gravity data collected from ships is often insufficient to image the detail of seafloor geological structures and to explore offshore natural minerals. Therefore, the development of a mobile underwater gravimetry system is necessary. The GraviMob gravimeter, developed for a moving underwater platform by Geo-Ocean (UMR 6538 CNRS-Ifremer-UBO-UBS), GeF (UR4630, Cnam) and MAPPEM Geophysics, has been tested over the last few years. In this study, we report on the high-resolution gravity measurements from the GraviMob system mounted on an Autonomous Underwater Vehicle, which can measure at depths of up to several kilometres. The dedicated GraviMob underwater gravity measurements were conducted in the Mediterranean Sea in March 2016, with a total of 26 underwater measurement profiles. All these measurement profiles were processed and validated. In a first step, the GraviMob gravity measurements were corrected for temperature based on a linear relationship between temperature and gravity differences. Through repeated profiles, we acquired GraviMob gravity measurements with an estimated error varying from 0.8 to 2.6 mGal with standard deviation after applying the proposed temperature correction. In a second step, the shipborne gravity data were downward continued to the measurement depth to validate the GraviMob measurements. Comparisons between the corrected GraviMob gravity anomalies and downward continued surface shipborne gravity data revealed a standard deviation varying from 0.8 to 3.2 mGal and a mean bias value varying from −0.6 to 0.6 mGal. These results highlight the great potential of the GraviMob system in measuring underwater gravity.

Licence CC-BY
Full Text
File Pages Size Access
Publisher's official version 23 22 MB Open access
Top of the page

How to cite 

Vu Dinh Toan, Verdun Jérôme, Cali José, Maia Marcia, Poitou Charles, Ammann Jerome, Roussel Clement, D’eu Jean-François, Bouhier Marie-Edith (2024). High-Resolution Gravity Measurements on Board an Autonomous Underwater Vehicle: Data Reduction and Accuracy Assessment. Remote Sensing, 16(3), 461 (23p.). Publisher's official version : https://doi.org/10.3390/rs16030461 , Open Access version : https://archimer.ifremer.fr/doc/00875/98648/