Copy this text
Towards the understanding of the uptake and depuration of microplastic in the ragworm Hediste diversicolor: Field and laboratory study
An important number of studies have evaluated the presence of microplastics, particles with a size below 5 mm, in aquatic organisms. Studies have shown that these fragments are widely present in the marine environment, but research on the estuarine ecosystem is still scarce. In this study, two different approaches were used to evaluate the presence and ingestion of plastic particles in the ragworm Hediste diversicolor: a field study for the environmental assessment and a laboratory experiment in controlled condition. For the environmental evaluation, ingestion of microplastics was evaluated in the ragworm H. diversicolor sampled from the mudflats of the Seine estuary (France) during March and June 2017 and 2018, on two locations: S1 and S2, both characterized by high anthropogenic pressures, and for S2 a more influential hydrodynamic component. Ingestion of microplastics was measured in ragworms tissues and in gut content (sediment) after depuration. The number of particles as well as their size, shape and color were reported and compared between sampling period and locations. Results showed the presence of a low number of particles in both worms and gut content. In gut content, 45.6% and 87.58% of samples from site S1 and S2 respectively contained plastic like particles. In worms, 41.7% (S1) and 75.8% (S2) of analysed samples contained plastic like items. The lowest mean number of particles was 0.21 ± 0.31 (S1 in June 2017) in worms’ tissues, but 0.80 ± 0.90 (S1 in June 2017) in the gut content and the highest was 1.47 ± 1.41 (S2 in April 2017) while the highest number was 2.55 ± 2.06 (S2 in June 2017) in worms and gut content respectively. The majority of suspected microplastics observed were fibers (66%) and fragments (27%), but films (3.7%) foam (2.1%), and granules (0.2%) were also identified. In addition, the most polymer type observed by Raman spectroscopy was polypropylene. Furthermore, a preliminary study of the ingestion and egestion of fluorescent polyethylene (PE) microbeads in the digestive tract of ragworms was conducted after exposure through water, during 1h at 1.2 × 106 MP/mL. Results showed a rapid turnover of PE microbeads throughout the digestive tract of worms especially after exposure through water. This study revealed that microplastics are ingested by the ragworm H. diversicolor but do not seem to bioaccumulate. More research is needed to measure potential chronic effects of microplastics on physiological parameters of H. diversicolor and potential trophic transfer of microplastics.
Keyword(s)
Hediste diversicolor, Ragworm, Ingestion, Egestion, Microplastics, Estuary, Sediment
Full Text
File | Pages | Size | Access | |
---|---|---|---|---|
Author's final draft | 38 | 1016 Ko | ||
Publisher's official version | 12 | 7 Mo |